StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Fruchtzucker ist in aller Munde. Er wird vielen Fertiggerichten zugesetzt und ist als Süßungsmittel in der Lebensmittelindustrie verbreitet. Mittlerweile ist Fruchtzucker stark in Verruf geraten, da der versteckte Zucker für erhöhte Blutfettwerte und Übergewicht verantwortlich gemacht wird. Doch was ist Fruchtzucker überhaupt?Fructose, auch Fruchtzucker genannt, gehört zu den Kohlenhydraten und ist ein Monosaccharid, also ein Einfachzucker. Bevor Du mehr über…
Entdecke über 200 Millionen kostenlose Materialien in unserer App
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenFruchtzucker ist in aller Munde. Er wird vielen Fertiggerichten zugesetzt und ist als Süßungsmittel in der Lebensmittelindustrie verbreitet. Mittlerweile ist Fruchtzucker stark in Verruf geraten, da der versteckte Zucker für erhöhte Blutfettwerte und Übergewicht verantwortlich gemacht wird. Doch was ist Fruchtzucker überhaupt?
Fructose, auch Fruchtzucker genannt, gehört zu den Kohlenhydraten und ist ein Monosaccharid, also ein Einfachzucker. Bevor Du mehr über die Eigenschaften und die Herstellung von Fructose erfährst, solltest Du Dich zunächst mit der Summenformel und der Strukturformel des Monosaccharids beschäftigen.
Die Summenformel von Fructose lautet: C6H12O6. Damit hat Fructose die gleiche Summenformel wie Glucose, denn Glucose und Fructose sind Konstitutionsisomere. Konstitutionsisomere sind Verbindungen mit der gleichen Summenformel, aber unterschiedlichen Strukturformeln. Das verdeutlicht dir auch Abbildung 1.
Abbildung 1: Glucose und Fructose als Konstitutionsisomere
Fructose ist eine Verbindung, die zwei Enantiomere besitzt. Enantiomere sind Moleküle, deren Verhalten wie Bild und Spiegelbild ist. Es ist eine Form der Stereoisomerie.
Stereoisomere haben die gleiche Konstitution, aber eine unterschiedliche räumliche Anordnung.
Diese Enantiomere sind D-Fructose und L-Fructose. Zur Unterscheidung der beiden Verbindungen wird die Fischer-Projektion verwendet.
Die Fischer-Projektion ist eine Schreibweise, mit der Stereoisomere dargestellt werden können. Dabei schreibst Du die Kohlenstoff-Kette der Kohlenhydrate senkrecht von oben nach unten. Die Molekülgruppe mit der höchsten Oxidationsstufe zeigt nach oben. Die Oxidationsstufe, auch Oxidationszahl genannt, beschreibt die Anzahl der Elementarladungen, die ein Atom einer Verbindung abgegeben oder aufgenommen hat. Die Hydroxygruppen der Monosaccharide zeigen nach rechts und nach links. Für die Unterscheidung der Enantiomere betrachtest du die OH-Gruppe am fünften C-Atom.
Bei D-Fructose ist die OH-Gruppe am fünften C-Atom in der Fischer-Projektion nach rechts gerichtet. Dagegen zeigt die OH-Gruppe von L-Fructose nach links. In Abbildung 2 siehst du die Strukturformeln von D- und L-Fructose. Beachte hierbei, dass in der Natur nahezu nur D-Fructose vorkommt. L-Fructose hat physiologisch betrachtet kaum eine Bedeutung.
Abbildung 2: Strukturformel von D- und L-Fructose
Wie du in der Strukturformel von Fructose erkennen kannst, besitzt das Molekül eine Keto-Gruppe am zweiten C-Atom. Deswegen zählt Fructose zu den Ketosen. Zudem ist Fructose eine sogenannte Hexose, da die Verbindung sechs C-Atome aufweist.
In einer wässrigen Lösung bildet Fructose eine Ringform. Dabei reagiert die OH-Gruppe des fünften C-Atoms mit der Keto-Gruppe am zweiten C-Atom. Es kommt zu einer Halbacetalbildung. Somit liegt ein Fünfring vor, weswegen Fructose auch als Fructofuranose bezeichnet wird. Die Ringform kann jedoch auch zwischen der Keto-Gruppe und der OH-Gruppe am sechsten C-Atom gebildet werden, sodass ein Sechsring entsteht. In diesem Fall wird von Fructopyranose gesprochen.
Ein Halbacetal ist ein Molekül mit einem C-Atom, an dem sowohl eine Alkoxy-Gruppe als auch eine Hydroxygruppe gebunden sind. Wenn Du mehr über dieses Thema wissen willst, schaue gerne bei unserem Artikel dazu vorbei.
Die Ringform von Fructose wird mit der Haworth-Projektion abgebildet. In der Haworth-Projektion ist der Sauerstoff, welcher den Ring schließt, der rechten oberen Ecke. Vom Sauerstoff-Atom aus werden die C-Atome im Uhrzeigersinn durchnummeriert.
Durch die Ringbildung bildet sich am zweiten C-Atom von Fructose ein weiteres Stereozentrum. Ein Stereozentrum ist ein Punkt in einem Molekül, bei dem die Substituenten so gebunden sind, dass das Bild und Spiegelbild nicht deckungsgleich sind. Durch dieses neu gebildete Stereozentrum kannst Du α-D-Fructose und β-D-Fructose unterscheiden. Abbildung 3 zeigt eine Übersicht über die verschiedene Stereoisomere von D-Fructose.
Abbildung 3: Stereoisomere von D-Fructose
Wie Du erkennen kannst, ist der entscheidende Faktor bei der Unterscheidung von α-D-Fructose und β-D-Fructose die Stellung der OH-Gruppe am zweiten C-Atom. Wenn die Hydroxygruppe nach unten zeigt, wird von α-D-Fructose gesprochen. Bei β-D-Fructose ist die OH-Gruppe nach oben gerichtet.
Nachdem Du alles über den Aufbau von Fructose erfahren hast, siehst Du hier eine Tabelle mit den Eigenschaften von Fructose.
Eigenschaften von Fructose | |
Beschreibung | farblose Nadeln oder Prismen, ohne Geruch, sehr süßer Geschmack |
Molare Masse | 180,16 |
Aggregatzustand | fest |
Dichte | 1,59 |
Schmelzpunkt | zersetzt sich bei 103 °C |
Löslichkeit | sehr gut wasserlöslich (bei 20 °C 790 )gute Löslichkeit in Acetonschlecht löslich in Diethylether, Benzol und Chloroform |
Fructose ist eine hygroskopische Substanz. Das bedeutet, dass das Monosaccharid wasseranziehend ist. Es bindet die Feuchtigkeit aus der Umgebung. Durch die hygroskopischen Eigenschaften sind Zuckermischungen, die Fructose beinhalten, weicher. Dies sorgt für ein angenehmeres Gefühl im Mund.
Zur Herstellung von Fructose erfolgt häufig durch Verwendung des Ausgangsstoffs Inulin. Inulin ist ein Polyfructosan, welches aus vielen Fructose-Molekülen aufgebaut ist. Diese sind zu Ketten verknüpft. Es dient in Pflanzen, wie Artischocken oder Löwenzahnwurzeln, als Reserve-Kohlenhydrat. Die Spaltung der Fructose-Ketten von Inulin findet mittels Säure oder Enzyme statt. In Abbildung 4 siehst Du die Strukturformel von Inulin. Das n steht für die Anzahl der sich wiederholenden Fructose-Bausteine. Es liegt im Bereich von circa 35 Fructosemolekülen.
Abbildung 4: Strukturfomel von Inulin
Eine weitere Möglichkeit ist die Spaltung von Saccharose. Saccharose ist ein Disaccharid aus Glucose und Fructose. Das Enzym Invertase spaltet das Disaccharid in die beiden Monosaccharide. Nach der Spaltung liegt eine Mischung aus Glucose und Fructose vor. Die Trennung des Gemischs ist jedoch schwierig. Daher ist diese Herstellungsweise eher unwirtschaftlich.
Ferner werden Maisstärke und andere pflanzliche Stärken zur Gewinnung von Fructose genutzt. Dazu wird die Maisstärke zunächst gelöst. Anschließend entsteht durch das Enzym Amylase Maissirup. Im weiteren Verlauf bildet sich durch die Glucoseisomerase high fructose corn sirup (HFCS), Glucose-Fructose-Sirup. Besonders in den USA ist dieser Sirup verbreitet.
Fructose findest Du in der Natur, denn die kommen in vielen Obst- und Gemüsesorten vor. Kernobst, wie Äpfel und Birnen, Beeren, etwa Weintrauben, sowie exotische Früchte, wie Granatapfel und Kiwi, sind hier hervorzuheben. Gemüsesorten, welche das Monosaccharid beinhalten, sind beispielsweise Paprika und Zwiebeln.
Ein weiteres bekanntes Lebensmittel mit Fructose ist Honig. Aber auch normaler Haushaltszucker weist Fructose auf, denn dieser besteht aus der zuvor erwähnten Saccharose.
In der Lebensmittelindustrie wird Fructose häufig als Süßungsmittel eingesetzt, da dieses gegenüber herkömmlichem Zucker eine um etwa 20 % größere Süßkraft hat. Die recht kostengünstige Produktion von Fructose ist ein weiterer Grund.
Fructose kannst Du mithilfe der Fehling-Probe nachweisen. Die Fehling-Probe weist bei Fructose ein positives Ergebnis auf, wegen einer stattfindenden Keto-Enol-Tautomerie. Denn Fructose kann mittels Keto-Enol-Tautomerie in Glucose umgewandelt werden. Die positive Fehling-Probe begründet sich schließlich auf die Aldehyd-Gruppe der Glucose.
Die Keto-Enol-Tautomerie beschreibt ein Gleichgewicht, welchen zwischen der Keto-Form eines Moleküls und der Enol-Form besteht. Die Keto-Form und die Enol-Form sind dabei Konstitutionsisomere. Bei der Tautomerie findet eine Umprotonierung statt, welche säure- respektive basenkatalysiert ist.
Abbildung 5: Keto-Enol-Tautomerie zwischen Fructose und Glucose
In Abbildung 4 kannst Du erkennen, dass Fructose mittels Keto-Enol-Tautomerie in Glucose umgewandelt werden kann.
Wenn Du mehr zur Fehling-Probe wissen willst, schaue gerne unseren Artikel dazu an.
Eine weitere Variante zum Nachweis von Fructose ist die Seliwanow-Probe. Mit dieser Probe werden Ketohexosen, die in der Ringform als Furanosen vorliegen, nachgewiesen. Diese Bedingung erfüllt Fructose, da es eine Keto-Gruppe und sechs C-Atome besitzt sowie einen Fünfring bilden kann.
Resorcin ist eine Verbindung, die rein formell von Benzol abstammt. Es besteht aus einem Benzol -Ring und zwei Hydroxygruppe, die in meta-Stellung zueinander stehen. Mithilfe von Resorcin werden Farbstoffe und Kunststoffe hergestellt. Zudem dient es als Haftmittel bei beispielsweise Stahl.
Abbildung 6: Strukturformel von Resorcin
Für diesen Nachweis erwärmst Du Fructose, Salzsäure und eine ethanolische Resorcin-Lösung zusammen. Dadurch kommt es zu einer Wasserabspaltung bei Fructose, sodass Hydroxymethylfurfural entsteht. Hydroxymethylfurfural reagiert schließlich mit Resorcin und Sauerstoff aus der Luft. Es entsteht eine rote Färbung, wie Du in Abbildung 5 sehen kannst.
Abbildung 7: Rote Färbung bei einem positiven Nachweis bei der Seliwanow-Probe
Mithilfe der Seliwanow-Probe kannst Du Fructose und Glucose unterscheiden, denn die Seliwanow-Probe weist ein negatives Ergebnis für Glucose auf. Eine Keto-Enol-Tautomerie zwischen Fructose und Glucose ist nicht möglich, da eine saure Umgebung vorliegt.
Fructose kommt in vielen Obst- und Gemüsesorten sowie in Honig vor. Fructose wird von der Lebensmittelindustrie auch als Süßungsmittel verwendet.
Fructose kann mittels Keto-Enol-Tautomerie in Glucose umgewandelt werden. Bei der Keto-Enol-Tautomerie findet eine Umprotonierung statt, sodass Fructose über ein Endiol als Zwischenprodukt in Glucose überführt wird.
Glucose ist eine Aldose, also ein Monosaccharid mit einer Aldehyd-Gruppe. Fructose enthält eine Keto-Gruppe und ist somit eine Ketose.
Glucose und Fructose sind Konstitutionsisomere. Das bedeutet, die beiden Monosaccharide haben die gleiche Summenformel, aber die Atome sind unterschiedlich miteinander verknüpft. Glucose und Fructose haben eine unterschiedliche Struktur.
Wie möchtest du den Inhalt lernen?
94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmelden94% der StudySmarter Nutzer erzielen bessere Noten.
Jetzt anmeldenWie möchtest du den Inhalt lernen?
Kostenloser chemie Spickzettel
Alles was du zu . wissen musst. Perfekt zusammengefasst, sodass du es dir leicht merken kannst!
Sei rechtzeitig vorbereitet für deine Prüfungen.
Teste dein Wissen mit spielerischen Quizzes.
Erstelle und finde Karteikarten in Rekordzeit.
Erstelle die schönsten Notizen schneller als je zuvor.
Hab all deine Lermaterialien an einem Ort.
Lade unzählige Dokumente hoch und habe sie immer dabei.
Kenne deine Schwächen und Stärken.
Ziele Setze dir individuelle Ziele und sammle Punkte.
Nie wieder prokrastinieren mit unseren Lernerinnerungen.
Sammle Punkte und erreiche neue Levels beim Lernen.
Lass dir Karteikarten automatisch erstellen.
Erstelle die schönsten Lernmaterialien mit unseren Vorlagen.
Melde dich an für Notizen & Bearbeitung. 100% for free.