Open in App
Login Anmelden

Select your language

Suggested languages for you:
StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
|
|
Wasserstoffspektrum

Wusstest Du, dass Du jedes Element zum Leuchten bringen kannst? Dabei spielt der Wasserstoff eine besondere Rolle. Denn Wasserstoff ist das erste entstandene Element. Ihn findest Du überall im Universum. Über das Wasserstoffspektrum können Wissenschaftler*innen etwa bestimmen, wie alt Himmelskörper sind, die sie beobachten oder wie viel Wasserstoff sich im…

Inhalt von Fachexperten überprüft
Kostenlose StudySmarter App mit über 20 Millionen Studierenden
Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Wasserstoffspektrum

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Wusstest Du, dass Du jedes Element zum Leuchten bringen kannst? Dabei spielt der Wasserstoff eine besondere Rolle. Denn Wasserstoff ist das erste entstandene Element. Ihn findest Du überall im Universum. Über das Wasserstoffspektrum können Wissenschaftler*innen etwa bestimmen, wie alt Himmelskörper sind, die sie beobachten oder wie viel Wasserstoff sich im Weltall befindet.

Informationen erhältst Du aus den Spektrallinien für Wasserstoff. Das Wasserstoffspektrum wurde in mehrere Serien unterteilt, die von unterschiedlichen Wissenschaftler*innen gefunden wurden. Die wichtigeren Serien sind hierbei die Lyman-Serie und die Balmer-Serie. Wie das Wasserstoffspektrum einfach erklärt werden kann, wie Du das Energieniveauschema beschreiben, so wie die Wellenlänge der Spektrallinien berechnen kannst, erfährst Du hier.

Wasserstoffspektrum einfach erklärt

Jedes Element besitzt ein charakteristisches Spektrum. Dieses kann etwa die Verteilung von Energien zeigen. Du kannst es zum Vorschein bringen, indem Du einem Element Energie zuführst. Dabei nehmen die Elektronen des Elements für kurze Zeit Energie auf. Diese Energie wird als Photon wieder abgegeben. Die Wellenlängen dieser Photonen ergeben dann das Emissionsspektrum, wie von etwa Wasserstoff.

Das Wasserspektrum ist das charakteristische Atomspektrum des Wasserstoffs. Wasserstoff kann durch Energiezufuhr angeregt, also zum Leuchten gebracht werden. Die dabei, in Form von Licht, abgegebene Energie kann als Emissionsspektrum abgebildet werden.

Neben dem Emissionsspektrum existiert noch das Absorptionsspektrum. In der Erklärung zum Farbspektrum erfährst Du mehr dazu.

Du kannst Dir dieses Spektrum als Abfolge von Wellenlängen von Photonen vorstellen. Diese Energien findest Du in den Eigenschaften von Licht wieder. Licht besteht nämlich aus elektromagnetischen Wellen, die unterschiedliche Wellenlängen, Energien und Frequenzen haben.

Das bei der Anregung von Wasserstoff freigesetzte Licht besteht hierbei aus gleichen elektromagnetischen Wellen. Dadurch hat Wasserstoff auch immer das gleiche Emissionsspektrum.

Wasserstoffspektrum einfach erklärt Emissionsspektrum von Wasserstoff StudySmarterAbb. 1 - Wasserstoffspektrum als Emissionsspektrum.

Die Spektrallinien im Emissionsspektrum von Wasserstoff ergeben jedoch nicht das komplette Atomspektrum. Es sind tatsächlich nur die Spektrallinien, die sich im sichtbaren Bereich des elektromagnetischen Spektrums befinden. Das bisher bekannte Atomspektrum von Wasserstoff kannst Du folglich in einem größeren Energieniveauschema darstellen.

Energieniveauschema Wasserstoff

Die Übergänge im Energieniveauschema von Wasserstoff sind in Serien unterteilt. Weiterhin wurden sie nach den Entdeckern dieser Linien benannt.

Das Energieniveauschema von Wasserstoff enthält alle bekannten elektronischen Übergänge vom Element Wasserstoff. Diese sind jeweils in Serien unterteilt. Ein Energieniveau bezeichnet die Energie, die sich in einem System, etwa einem Atom, befindet.

Beachte, dass ein System wie ein Atom oder eine Schale eines Atoms noch weiter in unterschiedliche Energieniveaus unterteilt werden kann. In dem Fall der Energieniveaus des Wasserstoffatoms kannst Du jede Schale jeweils in ein Energieniveau zusammenfassen. Solltest Du die Schalen aber detaillierter betrachten wollen, dann kannst Du Dich mit der Orbitalstruktur von Atomen befassen.

Somit kannst Du auch die Energieniveaus bestimmen, auf denen sich die Elektronen eines Atoms befinden. Jede Schale eines Atoms besitzt ein anderes Energieniveau, wobei die erste Schale das geringste hat.

Was es mit den Schalen auf sich hat, erfährst Du im Bohrschen Atommodell oder Dalton Atommodell.

Ein Energieniveauschema beinhaltet die Informationen der Energieniveaus und den energetischen Übergängen eines Atomspektrums.

Wasserstoffspektrum  einfach erklärt Energieniveauschema von Wasserstoff StudySmarterAbb. 2 - Energieniveauschema von Wasserstoff.

Auf der linken Achse befindet sich das jeweilige Energieniveau, in dem sich das Elektron befindet. Bei \(n=1\) befindet sich das Elektron im Normalzustand. Der Normalzustand bezeichnet das Energieniveau eines Elektrons, in dem es keine externe Energie aufgenommen hat. Es ist folglich das tiefste Energieniveau in einem nicht angetreten System.

Die untere Achse beschreibt den elektromagnetischen Bereich, in dem die Übergänge stattfinden. Auf der rechten Achse ist die Bezeichnung der Schale, in der sich das jeweilige Energieniveau befindet. Die obere Achse gibt den Namen der Serie an.

Im Energieniveauschema befindet sich ebenfalls die sogenannte Konvergenzgrenze.

Die maximale Energie, die ein Elektron aufnehmen kann, nennst Du Konvergenzgrenze \(E_{n=\infty}\):

\[E_{n=\infty}=13{,}6\,\mathrm{eV}\]

Bei der Konvergenzgrenze tritt das Elektron aus dem Atom aus. Dementsprechend kann es auch nicht mehr in den Normalzustand zurückfallen und zu dem Emissionsspektrum beitragen.

Diese Energie bezeichnest Du auch als Ionisierungsenergie.

Die Serien Energieniveauschema des Wasserstoffs kannst Du auch berechnen.

Wasserstoffspektrum Formel

In der Spektroskopie wird statt Frequenz oder Wellenlänge häufig die Wellenzahl \(\tilde{\nu}\) angegeben. Die Wellenzahlen des Wasserstoffspektrums berechnest Du allgemein mit der Rydberg Formel.

Mit der Rydberg-Formel kannst Du die Wellenzahl \(\tilde\nu\) der Übergänge berechnen:

\[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)\]

\( R_{\infty}\) steht für die Rydberg-Konstante: \[R_{\infty}=1{,}0973731569\cdot10^7\,\mathrm{m}^{-1}\] \(n\) steht für die jeweiligen Energieniveaus, wobei \(n_2\) immer größer ist als \(n_1\), denn \(n_1\) ist das Energieniveau, auf das das Elektron zurückfällt.

Um die Wellenlängen zu erhalten, berechnest Du den Kehrwert der Wellenzahl.

Der Kehrwert der Wellenzahl \(\tilde{\nu}\) ergibt die Wellenlänge \(\lambda\):

\[\lambda=\frac{1}{\tilde{\nu}}\]

Wellenlängen unterscheiden sich also unter anderem in ihrer Energie. Dadurch hat jede Serie im Energieniveauschema auch eine andere Bedeutung.

Lyman-Serie

Die Photonen und somit Wellenlängen der Lyman-Serie entstehen durch den Rückfall angeregter Elektronen in den Normalzustand bei \(n=1\).

Bei der Lyman-Serie befindet sich das untere Energieniveau in der K-Schale. Die entsprechenden Wellenlängen befinden sich im ultravioletten Bereich des elektromagnetischen Energieniveauschemas, zwischen 91 und 122 Nanometern.

Zu der Lyman-Serie gehören die folgenden Wellenlängen. Die Bezeichnungen von Wellenlängen in Serien werden über das griechische Alphabet wiedergegeben. Das erste angeregte Energieniveau startet bei \(n=2\). Die Wellenlängen der Lyman-Serie können mit dem bloßen Auge nicht gesehen werden.

Angeregtes EnergieniveauBezeichnungWellenlänge in [nm]
\(n=2\)\(\alpha\)121,5
\(n=3\)\(\beta\)102,5
\(n=4\)\(\gamma\)97,2
\(n=5\)\(\delta\)94,92
\(n=6\)\(\epsilon\)93,73
.........
\(n\rightarrow\infty\)91,13

Tabelle 1: Wellenlängen der Lyman-Serie mit den dazugehörigen Energieniveaus und Bezeichnungen.

Astronomen benutzen die Lyman-Serie bei der Beobachtung ferner Himmelskörper. Hierbei berechnen Wissenschaftler die Rotverschiebung dieser Himmelskörper. Eine Rotverschiebung gibt die Verschiebung einer Wellenlänge in den roten Bereich des elektromagnetischen Spektrums wieder. Dadurch kann etwa das Alter verschiedener Himmelskörper bestimmt werden.

Die Rotverschiebung kannst Du mit dem Doppler Effekt erklären. Auch dazu findest Du eine eigene Erklärung!

Die Verteilung von Wasserstoff im Universum kann ebenfalls mit der Lyman-Serie erkundet werden. Wieso das interessant ist, erfährst Du in der Erklärung „Universum Größe“.

Die Wellenlängen der Lyman-Serie berechnest Du wie bereits beschreiben über die Rydberg-Formel. Diese kann jedoch noch mal vereinfacht werden.

Lyman-Serie Formel

Bei der Berechnung der Lyman-Serie ersetzt Du den ersten Teil der Formel in den Klammern durch eine 1. Das liegt daran, dass \(n_1=1\) ist und Du somit den Bruch einfach ausrechnen kannst.

Die Wellenzahlen \(\tilde\nu\) der Lyman-Serie können mit der vereinfachten Rydberg-Formel berechnet werden:

\[\tilde{\nu}=R_{\infty}\cdot\left(1-\frac{1}{n^2}\right)\]

\( R_{\infty}\) steht für die Rydberg-Konstante:

\[R_{\infty}=1{,}0973731569\cdot10^7\,\mathrm{m^{-1}}\]

\(n\) steht für die angeregten Energieniveaus.

Wie sieht eine Rechnung mit der Rydberg-Formel aus?

Lyman-Serie Wellenlänge berechnen

Beachte, dass bei der Berechnung der Wellenlängen der Lyman-Serie mit der Rydberg-Formel die Ergebnisse in Metern angegeben werden.

Aufgabe 1

Berechne die Wellenlänge der Lyman-Serie, wenn ein Elektron aus dem fünften Energieniveau \(n_2=5\) in das Erste zurückfällt. Gebe die Wellenlänge in Nanometern an.

Benutze die vereinfachte Formel der Lyman-Serie und \(R_{\infty}=1{,}0973731569\cdot10^7\,\mathrm{m^{-1}}\).

Antwort

Du kannst alle gegebenen Werte in die vereinfachte Rydberg-Formel einsetzen. Um Meter in Nanometer umzurechnen, dividierst Du den Wert durch \(10^9\).

\begin{align}\tilde{\nu}&=1{,}0973731569\cdot10^7\,\mathrm{m^{-1}}\cdot\left(1-\frac{1}{5^2}\right)\\[0,2cm]\tilde{\nu}&=10534782{,}3\,\mathrm{m^{-1}}\\[0,2cm]\tilde{\nu}&=0{,}01053478\,\mathrm{nm}^{-1}\end{align}

Jetzt berechnest Du noch den Kehrwert für die Wellenzahl.

\begin{align}\lambda&=\frac{1}{0,01053478\,\mathrm{nm}^{-1}}\\[0,2cm]\lambda&=94{,}92\,\mathrm{nm}\end{align}

Du kannst Dein Ergebnis mit der Tabelle 1 vergleichen. Die berechnete Wellenlänge wird in der Lyman-Serie als \(\delta\)-Wellenlänge bezeichnet.

Die zweite Serie im Wasserstoffspektrum nennst Du Balmer-Serie.

Spektrallinien Wasserstoff – Balmer-Serie

Die Balmer-Serie beinhaltet Spektrallinien der sichtbaren Wellenlängen des Wasserstoffs.

Bei der Balmer-Serie befindet sich das untere Energieniveau in der L-Schale (\(n=2\)). Die Spektrallinien befinden sich teilweise im sichtbaren Bereich zwischen 364 und 657 Nanometern.

Die folgenden Wellenlängen gehören zu der Balmer-Serie. Für die Bezeichnung der Balmer-Serie hängt immer, chronologisch, ein griechischer Buchstabe an einem großen \(\ce{H}\). Dieses steht für das Element Wasserstoff. Die Wellenlängen sind in Nanometern angegeben.

Angeregtes EnergieniveauBezeichnungFarbeWellenlänge in [nm]
\(n=3\)\(\ce{H_{\alpha}}\)rot (sichtbar)656,28
\(n=4\)\(\ce{H_{\beta}}\)Blau-Grün (sichtbar)486,13
\(n=5\)\(\ce{H_{\gamma}}\)Violett (sichtbar)434,05
\(n=6\)\(\ce{H_{\delta}}\)Violett (sichtbar)410,17
\(n=7\)\(\ce{H_{\epsilon}}\)Violett (sichtbar)397,01
\(n=8\)\(\ce{H_{\zeta}}\)Violett (sichtbar)388,81
\(n=9\)\(\ce{H_{\eta}}\)Ultraviolett (nicht sichtbar)383,44
\(n\rightarrow\infty\)Ultraviolett (nicht sichtbar)364,56

Tabelle 2: Wellenlängen der Balmer-Serie mit den dazugehörigen Energieniveaus und Bezeichnungen, sowie der Farbe.

Die ersten vier Wellenlängen, \(\ce{H_{\alpha}}\) bis \(\ce{H_{\delta}}\) kannst Du in einem Emissionsspektrum erkennen. Die Wellenlängen \(\ce{H_{\epsilon}}\) und \(\ce{H_{\zeta}}\) sind meist nur schwer zu erkennen. Bei der Balmer-Serie starten die angeregten Energieniveaus bei \(n=3\).

Die Balmer-Serie berechnest Du über die Balmer-Formel.

Balmer-Formel

Der Schweizer Physiker Johann Jakob Balmer konnte 1855 über seine Balmer-Formel die Spektrallinien des Wasserstoffs im sichtbaren Bereich berechnen.

Mit der Balmer-Formel berechnet sich die Wellenlänge \(\lambda\) wie folgt:

\[\lambda=A\cdot\left(\frac{n^2}{n^2-2^2}\right)\]

\(A\) steht hierbei für eine empirische Konstante mit dem Wert:

\[A=364{,}50682\cdot10^{-9}\,\mathrm{m}\]

Für \(n\) setzt Du wieder die angeregten Energieniveaus ein.

Alternativ gilt natürlich weiterhin die Rydberg-Formel. Diese kannst Du für die Balmer-Serie weiter vereinfachen. Das tiefste Niveau liegt hierbei bei \(n_2=2\).

Die Wellenzahl \(\tilde\nu\) der Balmer-Serie kann mit der folgenden Vereinfachung der Rydberg-Formel berechnet werden:

\[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{2^2}-\frac{1}{n^2}\right)\]

\( R_{\infty}\) steht für die Rydberg-Konstante:

\[R_{\infty}=1{,}0973731569\cdot10^7\,\mathrm{m}^{-1}\]

\(n\) steht für die angeregten Energieniveaus.

Mit diesen Formeln kannst Du nun die Balmer-Serie berechnen.

Balmer-Serie Wellenlänge berechnen

Um die Wellenlänge der Balmer-Serie zu berechnen, verwendest Du die Balmer-Formel.

Aufgabe 2

Berechne die erste nicht sichtbare Wellenlänge der Balmer-Serie mit der Balmer-Formel. Gebe die Wellenlänge in Nanometern an.

Benutze zur Berechnung die Balmer-Formel und \(A=364{,}50682\cdot10^{-9}\,\mathrm{m}\). Den ersten, nicht sichtbaren Übergang kannst Du in Tabelle 2 nachschauen.

Antwort

Die erste nicht sichtbare Wellenlänge der Balmer-Serie entsteht, wenn ein Elektron aus dem neunten Energieniveau (\(n=9\)) in das Zweite (\(n=2\)) zurückfällt. Du kannst alle gegebenen Werte in die Balmer-Formel einsetzen.

\begin{align}\lambda&=A\cdot\left(\frac{n^2}{n^2-2^2}\right)\\[0,2cm]\lambda&=364{,}50682\cdot10^{-9}\,\mathrm{m}\cdot\left(\frac{9^2}{9^2-4}\right)\\[0,2cm]\lambda&=383{,}44\,\mathrm{nm}\end{align}

Du kannst Dein Ergebnis mit der Tabelle 2 vergleichen. Die berechnete Wellenlänge wird in der Balmer-Serie als \(\ce{H_{\eta}}\)-Wellenlänge bezeichnet.

Die dritte Serie im Wasserstoffspektrum nennst Du Paschen-Serie.

Paschen-Serie

Die Paschen-Serie befindet sich im nicht sichtbaren infraroten Bereich des elektromagnetischen Energiespektrums.

Bei der Paschen-Serie befindet sich das untere Energieniveau in der M-Schale (\(n=3\)). Die Spektrallinien befinden sich im infraroten, nicht sichtbaren Bereich zwischen 820 und 1875 Nanometern.

Die folgenden Wellenlängen gehören zu der Paschen-Serie. Zur Bezeichnung der Wellenlängen werden wieder griechische Buchstaben verwendet. Die angeregten Energieniveaus starten bei \(n=4\).

Angeregtes EnergieniveauBezeichnungWellenlänge in [nm]
\(n=4\)\(\alpha\)1874,5
\(n=5\)\(\beta\)1281,4
\(n=6\)\(\gamma\)1093.5
\(n=7\)\(\delta\)1004,6
\(n\rightarrow\infty\)820,1

Tabelle 3: Wellenlängen der Paschen-Serie mit den dazugehörigen Energieniveaus und Bezeichnungen.

Für die Paschen-Serie verwendest Du erneut die Rydberg-Formel.

Paschen-Serie Formel

Die Rydberg-Formel wird für das niedrigste Energieniveau der Paschen-Serie erneut angepasst. Dieses liegt in der M-Schale (\(n=3\)).

Die Wellenzahlen \(\tilde\nu\) der Paschen-Serie werden mit der folgenden angepassten Rydberg-Formel berechnet:

\[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{3^2}-\frac{1}{n^2}\right)\]

\( R_{\infty}\) steht für die Rydberg-Konstante:

\[R_{\infty}=1{,}0973731569\cdot10^7\,\mathrm{m}^{-1}\]

\(n\) steht für die angeregten Energieniveaus.

Die Berechnung der Wellenlängen erfolgt analog zu Lyman-Serie.

Die vierte Serie im Wasserstoffspektrum ist die Brackett-Serie.

Brackett-Serie

Die Photonen und somit Wellenlängen der Brackett-Serie werden durch den „Rückfall“ angeregter Elektronen in das Energieniveau der N-Schale freigesetzt.

Bei der Brackett-Serie befindet sich das untere Energieniveau in der N-Schale (\(n=4\)). Die Übergänge finden im infraroten Bereich des elektromagnetischen Energieniveauschemas statt, zwischen 1458 und 4053 Nanometern.

Zu der Brackett-Serie gehören die folgenden Wellenlängen. Analog werden bei den Bezeichnungen griechische Buchstaben verwendet. Die angeregten Energieniveaus starten bei \(n=5\).

Angeregtes Energieniveau
Bezeichnung
Wellenlänge in [nm]
\(n=5\)
\(\alpha\)
4052,5
\(n=6\)
\(\beta\)
2625,9
\(n=7\)
\(\gamma\)
2166,1
\(n=8\)
\(\delta\)
1945,1
\(n=9\)
\(\epsilon\)
1818,1
...
...
...
\(n\rightarrow\infty\)
1458,0

Tabelle 4: Wellenlängen der Brackett-Serie mit den dazugehörigen Energieniveaus und Bezeichnungen.

Die Formel der Brackett-Serie ist erneut eine angepasste Rydberg-Formel.

Brackett-Serie Formel

Um die Brackett-Serie zu berechnen, wird die Rydberg Formel wird wieder nach dem niedrigsten Energieniveau angepasst. Diesmal liegt dieses in der N-Schale (\(n=4\)).

Die Wellenzahlen \(\tilde\nu\) der Brackett-Serie werden mit der angepassten Rydberg-Formel berechnet:

\[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{4^2}-\frac{1}{n^2}\right)\]

\( R_{\infty}\) steht für die Rydberg-Konstante:

\[R_{\infty}=1{,}0973731569\cdot10^7\,\mathrm{m}^{-1}\]

\(n\) steht für die angeregten Energieniveaus.

Die Berechnung an sich erfolgt wieder analog zur Lyman-Serie.

Obwohl es mehrere Serien im Wasserstoffspektrum gibt, sind die Lyman-Serie und Balmer-Serie im Vergleich die wissenschaftlich interessanteren Serien. Dies liegt daran, dass Du die entsprechenden Spektrallinien sehen kannst. Die zugehörigen Energieniveaus der unterschiedlichen Schalen werden im modernen Orbitalmodell genau beschrieben. Die Orbitalstruktur ist das aktuell genaueste Atommodell zur Beschreibung der Atomstruktur.

Wasserstoffspektrum – Das Wichtigste

  • Wasserstoffspektrum sieht immer gleich aus und wird in Serien unterteilt.
  • Ein Energiespektrum entsteht, wenn angeregte Elektronen Energie abgeben.
  • Wellenzahlen \(\tilde\nu\) für elektronische Übergänge aus dem \(n-\)ten Energieniveau können mit der Rydberg-Konstante \(R_\infty=1{,}0973731569\cdot10^7\,\mathrm{m^{-1}}\) über die Rydberg-Formel berechnet werden: \[\tilde{\nu}=R_{\infty}\cdot\left(1-\frac{1}{n^2}\right)\]
  • Wellenlängen \(\lambda\) können über Kehrwert von Wellenzahlen berechnet werden: \[\lambda=\frac{1}{\tilde{\nu}}\]
  • Die Wellenlängen der Lyman-Serie befinden sich zwischen 91 und 122 Nanometern.
    • Diese wird in der Astronomie zur Altersbestimmung von Himmelskörpern und zur Bestimmung der Menge an Wasserstoff im Universum genutzt.
    • Wellenzahlen werden durch vereinfachte Rydberg-Formel berechnet: \[\tilde{\nu}=R_{\infty}\cdot\left(1-\frac{1}{n^2}\right)\]
  • Die Wellenlängen der Balmer-Serie befinden sich zwischen 364 und 657 Nanometern.
    • Diese kann durch Balmer-Formel berechnet werden: \[\lambda=A\cdot\left(\frac{n^2}{n^2-4}\right)\]
    • Wellenlängen befinden sich teilweise im sichtbaren Bereich des elektromagnetischen Spektrums.
  • Die Wellenlängen der Paschen-Serie befinden sich zwischen 820 und 1875 Nanometern.
    • Wellenzahlen werden durch vereinfachte Rydberg-Formel berechnet: \[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{3^2}-\frac{1}{n^2}\right)\]
  • Die Wellenlängen der Brackett-Serie befinden sich zwischen 1458 und 4053 Nanometern.
    • Wellenzahlen werden durch vereinfachte Rydberg-Formel berechnet: \[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{4^2}-\frac{1}{n^2}\right)\]

Nachweise

  1. Uni-ulm.de: Bohrsches Atommodell (25.10.2022)
  2. Chemie.de: Lyman-Serie (25.10.2022)
  3. Spektrum.de: Lyman-Serie (25.10.2022)

Häufig gestellte Fragen zum Thema Wasserstoffspektrum

Mit der Balmer-Formel berechnest Du die Wellenlängen der Spektrallinien des Wasserstoffs, die zur Balmer-Serie gehören.

Wenn Du das Elektron vom Wasserstoff anregst, nimmt es Energie auf. Dadurch gelangt das Elektron an ein höheres Energieniveau. Das Elektron gibt die Energie kurz darauf wieder ab. Bei diesem Wechsel aus einem höheren Energieniveau in ein tieferes wird Licht emittiert, dessen Energie als Spektrum abgebildet werden kann.

Wenn Du das Elektron vom Wasserstoff anregst, nimmt es Energie auf. Das angeregte Elektron gibt die Energie schnell wieder als Photon ab. Je nach Energie kannst Du die Photonen als Linienspektrum abbilden.

Die kleinste Frequenz befindet sich bei 3,29 Terahertz. Die größte Wellenlänge ist 2,47 Terahertz lang. Du kannst eine Wellenlänge λ über die Formel f=c/λ in eine Frequenz f umrechnen. Dabei benötigst Du im Fall von Licht die Lichtgeschwindigkeit c.

Finales Wasserstoffspektrum Quiz

Wasserstoffspektrum Quiz - Teste dein Wissen

Frage

Erkläre, was das Wasserstoffspektrum ist.

Antwort anzeigen

Antwort

Das Wasserstoffspektrum zeigt die energetischen Übergänge im Wasserstoffatom.


Wenn Wasserstoff angeregt und zum Leuchten gebracht wird, kann das Wasserstoffspektrum in einem Emissionsspektrum aufgenommen werden. Hierbei sendet der Wasserstoff für ihn charakteristisch immer dieselben Wellenlängen aus. Diese entsprechen den Energien der Übergänge.

Frage anzeigen

Frage

Erkläre, was ein Emissionsspektrum eines Stoffes ist.

Antwort anzeigen

Antwort

In einem Emissionsspektrum werden die Wellenlängen von Photonen abgebildet, die von einem angeregten Stoff ausgesendet werden.

Frage anzeigen

Frage

Nenne das Schema, in dem elektronische Übergänge von Elektronen eines Stoffes abgebildet werden.

Antwort anzeigen

Antwort

Energieniveauschema

Frage anzeigen

Frage

Erkläre, was eine Schale eines Atoms ist.

Antwort anzeigen

Antwort

Atome besitzen Schalen, in denen sich deren Elektronen befinden. Diese entsprechen den jeweiligen Energieniveaus. Je größer das Atom ist, desto mehr Schalen und desto mehr energetische Zustände besitzt es.

Frage anzeigen

Frage

Erkläre, was ein Energieniveau ist.

Antwort anzeigen

Antwort

Ein Energieniveau beschreibt die Energie, die sich in einem System befindet. Hierbei kann es sich um einzelne Atome oder deren Schalen handeln.

Frage anzeigen

Frage

Ein Elektron kann nur maximal 13,6 eV (Elektronenvolt) aufnehmen.


Nenne, wie diese Grenze bezeichnet wird.

Antwort anzeigen

Antwort

Konvergenzgrenze

Frage anzeigen

Frage

Ein angeregtes Elektron eines Wasserstoffatoms befindet sich im Energieniveau \(n=4\). Kurz darauf fällt das Elektron in den Normalzustand \(n=1\) zurück.


Entscheide, welcher Serie dieser Übergang angehört.

Antwort anzeigen

Antwort

Lyman-Serie

Frage anzeigen

Frage

Ein angeregtes Elektron eines Wasserstoffatoms befindet sich im Energieniveau \(n=5\). Kurz darauf fällt das Elektron in das Energieniveau \(n=2\) zurück. Das entstandene Photon emittiert Licht mit der Wellenlänge \(\lambda=434{,}05\,\mathrm{nm}\).


Entscheide, welcher Serie dieser Übergang angehört und ob diese Wellenlänge sichtbar ist.



Antwort anzeigen

Antwort

Balmer-Serie, sichtbar.

Frage anzeigen

Frage

Nenne die Formel, mit der Du die Wellenzahl der Lyman-Serie berechnen kannst.

Antwort anzeigen

Antwort

\[\tilde{\nu}=R_{\infty}\cdot\left(1-\frac{1}{n^2}\right)\] 

\(R_{\infty}\): Rydberg-Konstante

\(n\): angeregtes Niveau

Frage anzeigen

Frage

Nenne die Formel, mit der Du die Wellenlängen der Balmer-Serie berechnen kannst.

Antwort anzeigen

Antwort

\[\lambda=A\cdot\left(\frac{n^2}{n^2-2^2}\right)\]

\(A=364{,}50682\cdot10^{-9}\,\mathrm{m}\)

\(n\): angeregtes Niveau

Frage anzeigen

Frage

Nenne die Formel, mit der Du die Paschen-Serie berechnen kannst.

Antwort anzeigen

Antwort

\[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{3^2}-\frac{1}{n^2}\right)\]

\(R_{\infty}\): Rydberg-Konstante

\(n\): angeregtes Niveau

Frage anzeigen

Frage

Nenne die Formel, mit der Du die Brackett-Serie berechnen kannst.

Antwort anzeigen

Antwort

\[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{4^2}-\frac{1}{n^2}\right)\]


\(R_{\infty}\): Rydberg-Konstante

\(n\): angeregtes Niveau

Frage anzeigen

Frage

Nenne die Formel, mit der Du die Wellenzahl von Übergängen von Elektronen berechnen kannst.

Antwort anzeigen

Antwort

\[\tilde{\nu}=R_{\infty}\cdot\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)\] 

\(R_{\infty}\): Rydberg-Konstante

\(n_1\): Niveau, in das der Übergang stattfindet

\(n_2\): angeregtes Niveau

Frage anzeigen

Frage

Nenne die Formel, mit der Du die Wellenzahl \(\tilde\nu\) des energetischen Übergangs eines Elektrons in die entsprechende Wellenlänge \(\lambda\) umrechnen kannst.

Antwort anzeigen

Antwort

\[\lambda=\frac{1}{\tilde{\nu}}\]

Frage anzeigen

Frage

Erläutere, ob energetische Übergänge wie die vom Wasserstoff für den Menschen sinnvoll sind.

Antwort anzeigen

Antwort

Nicht jeder Übergang ist wissenschaftlich direkt signifikant. Die Paschen und die Brackett-Serie finden zum Beispiel kaum Verwendung. Dies liegt daran, dass sie nicht im sichtbaren Bereich liegen. Die Lyman-Serie hingegen wird dazu benutzt, um das Alter von Himmelskörpern zu bestimmen.

Frage anzeigen

Karteikarten in Wasserstoffspektrum15

Lerne jetzt

Erkläre, was das Wasserstoffspektrum ist.

Das Wasserstoffspektrum zeigt die energetischen Übergänge im Wasserstoffatom.


Wenn Wasserstoff angeregt und zum Leuchten gebracht wird, kann das Wasserstoffspektrum in einem Emissionsspektrum aufgenommen werden. Hierbei sendet der Wasserstoff für ihn charakteristisch immer dieselben Wellenlängen aus. Diese entsprechen den Energien der Übergänge.

Erkläre, was ein Emissionsspektrum eines Stoffes ist.

In einem Emissionsspektrum werden die Wellenlängen von Photonen abgebildet, die von einem angeregten Stoff ausgesendet werden.

Nenne das Schema, in dem elektronische Übergänge von Elektronen eines Stoffes abgebildet werden.

Energieniveauschema

Erkläre, was eine Schale eines Atoms ist.

Atome besitzen Schalen, in denen sich deren Elektronen befinden. Diese entsprechen den jeweiligen Energieniveaus. Je größer das Atom ist, desto mehr Schalen und desto mehr energetische Zustände besitzt es.

Erkläre, was ein Energieniveau ist.

Ein Energieniveau beschreibt die Energie, die sich in einem System befindet. Hierbei kann es sich um einzelne Atome oder deren Schalen handeln.

Ein Elektron kann nur maximal 13,6 eV (Elektronenvolt) aufnehmen.


Nenne, wie diese Grenze bezeichnet wird.

Konvergenzgrenze

Mehr zum Thema Wasserstoffspektrum

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Finde passende Lernmaterialien für deine Fächer

Melde dich an für Notizen & Bearbeitung. 100% for free.

Fang an mit StudySmarter zu lernen, die einzige Lernapp, die du brauchst.

Jetzt kostenlos anmelden
Illustration