StudySmarter - Die all-in-one Lernapp.
4.8 • +11k Ratings
Mehr als 5 Millionen Downloads
Free
Americas
Europe
Hast Du Dich schon ein mal gefragt, wieso es üblich ist, zu sagen, dass man Kalorien verbrennt? Der Grund liegt darin, dass Dein Körper bei der Verdauung die verzehrten Nährstoffe mithilfe von Sauerstoff in kleinere Bestandteile runterbricht.
Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.
Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken
Jetzt kostenlos anmeldenHast Du Dich schon ein mal gefragt, wieso es üblich ist, zu sagen, dass man Kalorien verbrennt? Der Grund liegt darin, dass Dein Körper bei der Verdauung die verzehrten Nährstoffe mithilfe von Sauerstoff in kleinere Bestandteile runterbricht.
Diese Art von Reaktionen, bei denen chemische Verbindungen mithilfe von Sauerstoff oxidiert und so "klein gemacht" werden, nennt sich Verbrennung. Genau dieses Prinzip macht sich die Glimmspanprobe zunutze. Was die Glimmspanprobe ist und wozu diese in der Chemie genutzt wird, erfährst Du in diesem StudySmarter Original!
Bei einer Vielzahl von chemischen Reaktionen entstehen farblose Gase als Nebenprodukte. Du kannst Dir aber nie wirklich sicher sein, welche Gase sich schließlich gebildet haben. An dem Reagenzglas zu riechen, um es auf Anzeichen des entstandenen Gases zu prüfen, ist keine gute Idee, denn je nach Konzentration und Art des Gases kann das sehr gefährlich enden.
Rieche niemals an einem Reagenzglas, wenn Du unsicher bist, welche Stoffe sich gebildet haben könnten. Arbeite außerdem immer mit Schutzkleidung in einem Abzug und unter Aufsicht.
Zum Nachweis wurden in der analytischen Chemie zahlreiche simple Nachweisreaktionen entwickelt, um farblose Gase zu identifizieren. Eine dieser Nachweisreaktionen ist die bereits erwähnte Glimmspanprobe.
Die Glimmspanprobe ist eine qualitative Nachweisreaktion, um molekularen Sauerstoff nachzuweisen. Es wird also lediglich das Vorhandensein einer gewissen Konzentration an Sauerstoff bestimmt, ohne dass Du einen exakten Wert erhältst.
Das Wort Glimmspan leitet sich übrigens aus den altdeutschen Begriffen "glimmen" für glühen und "Span" für einen dünnen Holzstab ab. Es handelt sich also um einen glühenden Holzspan, der für die Nachweisreaktion namensgebend ist.
Wie Du in der Einleitung bereits gelernt hast, basiert die Glimmspanprobe auf der Verbrennung. Bei diesem Reaktionstyp wird ein brennbarer Stoff, etwa Holz, mit Zufuhr von Sauerstoff unter genügend Energiezufuhr entzündet. Das Ganze ist eine exotherme Reaktion, bei der Reaktion entsteht also mehr Energie, als verbraucht wird. So kann ein ganzer Stock über längere Zeit in einem aktiven Feuer abbrennen.
Endotherme Reaktionen auf der anderen Seite benötigen mehr Energie, als bei der Reaktion steht. Genauere Informationen zu diesem Thema findest Du in unserem StudySmarter Original.
Die überschüssige Energie wird nach außen abgegeben. Bei Verbrennungen geschieht das in Form von Licht und Wärme, auch Flammen genannt, die Du sicher schon mal im echten Leben gesehen hast. Die Hauptreaktion, die bei der Verbrennung abläuft, ist die von Zellulose mit Luftsauerstoff. Die Reaktionsgleichung dazu lautet:
$$C_6H_{12}O_6 + 6 \space O_2 \rightarrow 6 \space CO_2 + 6 \space H_2O$$
Zellulose besteht aus langen Ketten aus verzweigten Glucosemolekülen, die das Grundgerüst von Holz darstellen.
Aus dem Grund kann man auch ein Feuer als Heizquelle nutzen, wie es zum Beispiel in Kaminen geschieht. Diese sind so aufgebaut, dass in den Innenraum ständig frischer Sauerstoff befördert wird, um die Verbrennung trotz geschlossener Tür aufrechtzuerhalten.
Der Sauerstoff, der meist einfach aus der Luft stammt, ist bei Verbrennungen die limitierende Komponente. Wird dem Kaminfeuer nun die Sauerstoffzufuhr gekappt, so kannst Du beobachten, dass die Flammen langsam erlöschen und die Überreste ab dem Moment deutlich langsamer abbrennen und auch nur noch glühen.
Zur Durchführung der Glimmspanprobe benötigst Du
Zur Vorbereitung wird Sauerstoff aus der Gasflasche in ein Reagenzglas gefüllt. Da Sauerstoff (1,43 \(\frac{kg}{m^3}\)) eine größere Dichte als Luft (1,2 \(\frac{kg}{m^3}\)) hat, verbleibt das Gas auch im Reagenzglas und entweicht nicht so leicht wie andere Gase. Dann wird ein langer Holzstab mit einem Feuerzeug angezündet. Der Stab entflammt und wird nach einigen Sekunden wieder ausgepustet, sodass er weiter glimmt. Der noch glühende Span wird jetzt in das Reagenzglas geführt.
Abbildung 1: Durchführung der Glimmspanprobe.
Alternativ kannst Du die Glimmspanprobe aber auch bei Reaktionen anwenden, bei denen Du weißt, dass sich Sauerstoff bildet. So kann dann zum Beispiel der Fortschritt der Reaktion überprüft werden. Bildet sich viel Sauerstoff bei einer Reaktion, kann die Glimmspanprobe direkt über dem entsprechenden Reagenzglas durchgeführt werden. Ist die Konzentration allerdings niedrig, ist es sinnvoll, das entstehende Gas durch ein Rohr in ein weiteres Reagenzglas zu leiten und dort zu sammeln.
Je nachdem, welche Beobachtung Du bei der Glimmspanprobe machst, gibt es zwei mögliche Aussagen:
Die Glimmspanprobe lässt sich mit reaktionskinetischen Überlegungen erklären. Nachdem der Holzspan ausgepustet wurde, glüht er weiter. Die Verbrennung wurde nicht ganz unterbrochen, sondern läuft weiterhin ab, allerdings verlangsamt. Kommt der glimmende Span jetzt in Kontakt mit ausreichend Sauerstoff – also bei einer positiven Glimmspanprobe – flammt er wieder auf. Das liegt daran, dass der Sauerstoff die exotherme Reaktion beschleunigt und so schnell eine hohe Menge Reaktionswärme frei wird, sodass der Span wieder entflammt.
Neben molekularem Sauerstoff existiert allerdings noch das sogenannte Lachgas (Distickstoffmonoxid, N2O), welches ebenfalls ein brandfördernder Stoff ist. Aus diesem Grund kannst Du nach einer Glimmspanprobe nicht mit absoluter Gewissheit sagen, ob es sich bei dem Gas jetzt tatsächlich um molekularen Sauerstoff handelt. Es kann sich auch Lachgas gebildet haben.
Anhand der Ausgangsstoffe bei einer Reaktion kannst Du aber dennoch abschätzen, ob sich Lachgas bei der Reaktion überhaupt bilden konnte oder ob dies von vorneherein schon auszuschließen ist.
Wenn bei einer Reaktion Wasserstoff entsteht, kann dieser ebenfalls nachgewiesen werden. Hierzu muss das entstehende Gas in einem Reagenzglas kopfüber aufgefangen werden. Danach wird ein brennender Holzspan in das Gefäß eingeführt. Es ertönt ein Pfeifen aus dem Reagenzglas, das typisch für das Verbrennen eines explosiven Gemischs aus Wasserstoff und Sauerstoff ist. Die sogenannte Knallgasprobe war dann positiv. Bei reinem Wasserstoff verbrennt das Gas langsamer, was mit einem leiseren Geräusch verknüpft ist.
Ein anderer Nachweis ist die Kalkwasserprobe. Zunächst wird Calciumhydroxid (Ca(OH)2) in Wasser gelöst. Das Gemisch ist zu dem Zeitpunkt klar. Dann wird Kohlendioxid (CO₂) in das Gefäß befördert. Das kann mit einem Strohhalm passieren, durch den Du ausatmest. Mit der Zeit erscheint eine Trübung, die immer stärker wird, je länger Du pustest. Bei der Reaktion von Calciumhydroxid mit Kohlendioxid entsteht nämlich Kalk, der das Gemisch trübt.
$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$
Die Glimmspanprobe wird durchgeführt, indem ein glühender Holzstab in ein Reagenzglas mit dem zu untersuchenden Gas eingeführt wird.
Molekularer Sauerstoff wird durch die Glimmspanprobe nachgewiesen.
Mit der Glimmspanprobe können molekularer Sauerstoff, oder Lachgas nachweisen werden.
Flammt der glimmende Span in dem zu untersuchenden Gas wieder auf, ist die Glimmspanprobe positiv. Es liegt genügend Sauerstoff in dem zu untersuchenden Gas vor.
Karteikarten in Glimmspanprobe13
Lerne jetztWas weist Du mit der Glimmspanprobe nach?
Molekularen Sauerstoff
Welcher Stoff kann auch zu einem positiven Ergebnis der Glimmspanprobe führen?
Ein positives Ergebnis kann auch durch Lachgas ausgelöst werden.
Auf welcher Reaktion beruht die Glimmspanprobe?
Exotherme Reaktion
Außer dem qualitativen Nachweis für Sauerstoff kann die Glimmspannprobe für was verwendet werden?
Die Glimmspanprobe kann genutzt werden, um die Dichte von Sauerstoff im Verhältnis zu Luft darzustellen.
Was ist die Dichte von Sauerstoff?
Die Dichte von Sauerstoff ist 1,33 \(\frac{kg}{m^3}\)
Zu welchem Teilbereich der Chemie gehört die Glimmspanprobe?
Die Glimmspanprobe ist ein Nachweis in der analytischen Chemie.
Du hast bereits ein Konto? Anmelden
Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.
Melde dich an für Notizen & Bearbeitung. 100% for free.
Speichere Erklärungen in deinem persönlichen Bereich und greife jederzeit und überall auf sie zu!
Mit E-Mail registrieren Mit Apple registrierenDurch deine Registrierung stimmst du den AGBs und der Datenschutzerklärung von StudySmarter zu.
Du hast schon einen Account? Anmelden