Tragwerke

In der Welt des Bauingenieurwesens stellen Tragwerke das Fundament für sämtliche Baukonstruktionen dar. Ohne sie ist weder der Bau von Brücken, Hochhäusern noch von Einfamilienhäusern möglich. Dieser Artikel bietet einen detaillierten Überblick über die essentiellen Grundlagen, Definitionen und Typologie von Tragwerken. Darüber hinaus werden die Vorteile und Nachteile, einschließlich spezifischer Materialien für Tragwerke, analysiert und diskutiert. Ein weiterer Fokus liegt auf der Berechnung von Tragwerken, mit ausgewählten Beispielen und Erklärungen. Schließlich werden fortgeschrittene Konzepte wie räumliche und formaktive Tragwerke vorgestellt. Damit erhältst du ein umfassendes Verständnis für dieses fundamentale Thema im Bereich der Ingenieurwissenschaften.

Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Tragwerke

In der Welt des Bauingenieurwesens stellen Tragwerke das Fundament für sämtliche Baukonstruktionen dar. Ohne sie ist weder der Bau von Brücken, Hochhäusern noch von Einfamilienhäusern möglich. Dieser Artikel bietet einen detaillierten Überblick über die essentiellen Grundlagen, Definitionen und Typologie von Tragwerken. Darüber hinaus werden die Vorteile und Nachteile, einschließlich spezifischer Materialien für Tragwerke, analysiert und diskutiert. Ein weiterer Fokus liegt auf der Berechnung von Tragwerken, mit ausgewählten Beispielen und Erklärungen. Schließlich werden fortgeschrittene Konzepte wie räumliche und formaktive Tragwerke vorgestellt. Damit erhältst du ein umfassendes Verständnis für dieses fundamentale Thema im Bereich der Ingenieurwissenschaften.

Definition von Tragwerken

Ein Tragwerk wird in den Ingenieurwissenschaften als eine strukturelle Zusammenstellung von Bauteilen definiert, die dazu ausgelegt ist, Lasten aufzunehmen und sicher in den Baugrund abzuleiten.

Bevor ein Ingenieur ein Tragwerk konstruiert, muss er die Lasten, die auf das Tragwerk einwirken werden, genau analysieren. Dazu zählen sowohl vertikale Lasten, wie das Eigengewicht des Gebäudes und Nutzlasten, als auch horizontale Lasten, wie Windkräfte.

Die Art und Weise, wie ein Tragwerk Lasten abträgt, ist entscheidend für die Stabilität und Sicherheit einer Konstruktion. Hierbei spielt die Materialwahl sowie die Form des Tragwerks eine wichtige Rolle.

Beispiele für Tragwerke

Tragwerke findest du in allen Arten von Bauwerken. Dazu gehören zum Beispiel Hochhäuser, Brücken, Dachstrukturen oder auch Stadiondächer. Doch auch im Kleinen kommen Tragwerke zum Einsatz – so bildet zum Beispiel das Skelett eines Regals ein einfaches Tragwerk, das die auf den Regalböden verteilten Lasten sicher in den Boden ableitet.

Um den Aufbau von Tragwerken besser zu verstehen, kann man sie in verschiede Bauteile einteilen. Dazu gehören unter anderem
  • Stützen: Sie leiten vorrangig vertikale Lasten ab.
  • Träger: Sie nehmen horizontale Lasten auf und leiten sie weiter in die Stützen und anschließend in den Baugrund.
  • Aussteifende Elemente: Sie dienen der Sicherung gegen horizontale Lasten wie Windkräfte.

Arten von Tragwerken

Es gibt viele verschiedene Arten von Tragwerken, die sich nach Form, Material und Konstruktionsweise unterscheiden. Dazu zählen unter anderem:
MassivtragwerkBesteht in der Regel aus Beton oder Mauerwerk und ist vor allem bei Gebäuden verbreitet.
SkelettragwerkIst vor allem bei Stahl- und Holzbauten zu finden. Hierbei tragen einzelne, klar zu identifizierende Bauteile (Stützen, Träger) die Lasten.
FlächentragwerkTrägt die Lasten über die gesamte Fläche ab, zum Beispiel bei Platten und Scheiben.
LinientragwerkTrägt die Lasten entlang einer Linie ab, beispielsweise bei Trägern und Bögen.
Ferner unterscheidet man in \[ \text{Einfeldträger}, \text{Zweifeldträger}, \text{Dreifeldträger}, \ldots \] wobei die Anzahl der Felder die Anzahl der entfernbaren, also nicht unbedingt benötigten Stützen angibt. Je nach Art des Tragwerks und der einwirkenden Lasten, muss der Ingenieur verschiedene Berechnungsansätze und Modelle verwenden. Ziel ist es immer, ein möglichst sicheres, aber gleichzeitig auch wirtschaftliches Tragwerk zu entwerfen.

Vorteile und Nachteile von Tragwerken

Ein sorgfältig geplantes und gebautes Tragwerk kann viele Vorteile mit sich bringen, aber es gibt auch einige Herausforderungen und Nachteile, die berücksichtigt werden müssen.

Vorteile von Tragwerken im Bauingenieurwesen

Tragwerke bieten eine Reihe von essenziellen Vorteilen, die sie zu einem integralen Bestandteil in der modernen Bauindustrie machen. Einer der wichtigsten Vorteile ist die Stabilität und Sicherheit von Bauwerken. Durch den gezielten Einsatz von Stützen, Trägern und aussteifenden Elementen, kann ein Tragwerk dafür sorgen, dass Lasten sicher in den Baugrund abgeleitet werden. Ein weiterer Vorteil ist die Anpassbarkeit

von Tragwerken. Sie können maßgeschneidert werden, um spezifischen Anforderungen an Form und Belastung eines Bauwerks gerecht zu werden. Zudem ermöglicht die Konstruktion eines Tragwerks die Optimierung der Materialverwendung. Das bedeutet, dass man durch die gezielte Verteilung der Materialien genau dort, wo sie gebraucht werden, eine enorme Material- und damit auch Kostenersparnis erzielen kann. Durch den Einsatz von modernen Berechnungsverfahren und digitaler Planungsmethoden (BIM), kann die Planung, Herstellung und Montage von Tragwerken heute sehr effizient gestaltet werden.

Fortschritte in der Materialforschung, wie zum Beispiel Verbundwerkstoffe oder Hochleistungsbeton, eröffnen zudem neue Möglichkeiten für Tragwerke und liefern Lösungen für komplexe konstruktive Herausforderungen.

Nachteile von Tragwerken im Bauingenieurwesen

Trotz der vielen Vorteile von Tragwerken gibt es dennoch auch Herausforderungen und Nachteile, die es zu berücksichtigen gilt. Ein nachteil kann beispielsweise der hohe Planungsaufwand sein. Anders als bei standardisierten Lösungen, muss ein Tragwerk für jedes Bauvorhaben individuell berechnet und konstruiert werden. Dies ist mit erheblichem Aufwand verbunden. Ein weiteres potentielles Problem kann die Abhängigkeit von Fachwissensein. Die korrekte Planung und Ausführung eines Tragwerks verlangt spezialiserte Kenntnisse. Fehler können hier fatale Folgen haben und in einigen Fällen auch der Grund für tragische Bauunfälle sein.

Ebenso kann der Einsatz teurer Materialien oft ein Nachteil sein. Hochwertige Baustoffe und Materialien, die lange Lebensdauern ermöglichen und über hohe Tragfähigkeiten verfügen, können ein großes Loch in das Budget reißen.

Ebenso muss neben den technischen Aspekten auch stets die Ästhetikberücksichtigt werden. Was technisch sinnvoll ist, ist nicht immer auch für den Betrachter ästhetisch ansprechend. Dies kann den Gestaltungsspielraum der Architekten und Ingenieure einschränken.

Ein weiterer kritischer Faktor ist auch, dass Tragwerke im Allgemeinen permanent und nicht reversibel sind. Wenn ein Tragwerk erst einmal steht, ist es sehr teuer und aufwendig, es zu verändern oder gar zu entfernen.

Ausgewählte Materialien für Tragwerke

Wenn du ein Tragwerk planst und entwirfst, ist die Auswahl des richtigen Materials von entscheidender Bedeutung. Je nach Art der Konstruktion und den spezifischen Anforderungen kann das ideale Material variieren. Lass uns einen genaueren Blick auf drei der am häufigsten verwendeten Materialien werfen: Holz, Stahl und Beton.

Tragwerke aus Holz

Holz ist ein natürlich vorkommendes Material, das in den Ingenieurwissenschaften häufig Verwendung findet. Aufgrund seiner Nachhaltigkeit, Robustheit und guten Bearbeitungsfähigkeit, ist es ein beliebter Werkstoff für Tragwerke.

Ein Holztragwerk ist im Wesentlichen eine Struktur, die aus Holz oder holzbasierten Materialien wie Sperrholz oder Holzfaserplatten besteht.

Ein großer Vorteil von Holz ist, dass es ein erneuerbarer Rohstoff ist. Zudem hat es eine geringere Umweltbelastung als viele andere Baumaterialien. Neben diesen umweltfreundlichen Aspekten, verfügt es über eine hohe Festigkeit, ein geringes Gewicht und gute Dämmeigenschaften.

Ein Beispiel für ein Tragwerk aus Holz könnte das Dach eines Hauses sein. Hier werden die Dachbalken üblicherweise aus Massivholz gefertigt und mit speziell designten Verbindungselementen so verbunden, dass die Lasten gleichmäßig verteilt werden und sicher in die tragenden Wände des Hauses abgeleitet werden können.

Einige Nachteile von Holz als Material für Tragwerke beziehen sich jedoch auf seine Empfindlichkeit gegenüber Witterungseinflüssen und Schädlingen. Durch entsprechende Behandlung und konstruktiven Holzschutz lässt sich dies jedoch in den meisten Fällen gut in den Griff bekommen.

Tragwerke aus Stahl

Stahl ist ein weiteres weit verbreitetes Material im Bauwesen, insbesondere für Tragwerke. Er zeichnet sich durch seine hohe Festigkeit, seine gute Formbarkeit und seine lange Lebensdauer aus.

Unter einem Stahltragwerk versteht man eine Konstruktion, die hauptsächlich aus Stahl oder stahlhaltigen Materialien besteht. Dabei können sowohl Vollmaterialien, als auch Profile oder Bleche zum Einsatz kommen.

Einige Vorteile, die mit dem Einsatz von Stahltragwerken einhergehen, sind:
  • Hohe Festigkeit: Stahl eignet sich hervorragend für Bauvorhaben, bei denen starke Belastungen erwartet werden.
  • Flexibilität: Stahl ist sehr formbar und kann für eine Vielzahl von Konstruktionsformen und -anforderungen eingesetzt werden.
  • Langlebigkeit: Bei richtiger Pflege und Wartung kann ein Stahlbauwerk sehr lange halten.
Ungeachtet der vielen Vorteile bringt die Verwendung von Stahl als Tragwerk jedoch auch einige Herausforderungen mit sich. Ein Hauptnachteil ist die Korrosionsanfälligkeit, die eine regelmäßige Wartung erfordert, um die Strukturintegrität zu erhalten. Zudem führen die hohen Materialkosten oft zu erhöhten Projektkosten.

Tragwerke aus Beton

Beton ist ein äußerst vielseitiges Baumaterial, das aufgrund seiner Festigkeit, Feuerbeständigkeit und guten Preis-Leistungs-Verhältnisses häufig in der Konstruktion von Tragwerken verwendet wird.

Ein Betontragwerk ist eine Konstruktion, die aus Beton oder betonartigen Materialien besteht. Dabei spielt der Eisenbeton, also Beton in Kombination mit einer Bewehrung aus Stahl, eine besondere Rolle.

Betontragwerke sind in vielen Formen und Größen erhältlich und können eine Vielzahl von Strukturen und Formen darstellen, von massiven Stützen und Balken bis hin zu dünnen, vorgespannten Platten. Einige der Hauptvorteile der Verwendung von Beton für Tragwerke sind:
  • Hohe Druckfestigkeit: Beton hält hohen Drucklasten stand und eignet sich daher besonders für Gebäude, die starke Belastungen tragen müssen.
  • Feuerbeständigkeit: Beton ist besonders widerstandsfähig gegen Feuer und bietet daher ein hohes Maß an Sicherheit.
  • Vielseitigkeit: Beton kann in nahezu jede Form gegossen werden, was zahlreiche Designmöglichkeiten eröffnet.
  • Kosten: Beton ist im Vergleich zu vielen anderen Baumaterialien relativ preiswert.
Jedoch muss auch hier festgestellt werden, dass die Verwendung von Beton seine Grenzen hat. Beton ist zwar sehr druckfest, hat jedoch nur eine begrenzte Zugfestigkeit. Daher muss er oft mit Stahl armiert werden (Stahlbeton), um auch Zugkräfte sicher abtragen zu können. Zudem hat Beton eine lange Aushärtezeit, welche die Bauzeit verlängern kann.

Berechnung von Tragwerken

Bei der Planung, Umsetzung und Instandhaltung technischer Bauwerke spielt die Berechnung von Tragwerken eine entscheidende Rolle. Unabhängig davon, ob ein Hochhaus, eine Brücke oder eine Maschine entworfen wird, gehört die Tragwerksplanung immer dazu. Ein umfassendes Verständnis der Strukturanalyse und der Festigkeitslehre ist für jede Ingenieurdisziplin unabdingbar.

Grundlagen der Tragwerkberechnung

Die Grundlagen der Tragwerkberechnung fallen in den Bereich der Ingenieurwissenschaften und sind eng verknüpft mit den Grundlagen der Mechanik. Es geht dabei um das Verständnis, wie Lasten in den Materialien verteilt werden und wie diese Kräfte das Verhalten und schließlich das Versagen der Struktur bestimmen. Zunächst einmal unterscheidet man zwischen äußeren und inneren Kräften. Äußere Kräfte sind die Lasten, die auf das Tragwerk einwirken, wie zum Beispiel Windlasten, Schneelasten, Verkehrslasten oder die Eigengewichte der Bauteile. Innere Kräfte sind die in den Bauteilen vorliegenden Kräfte, die durch die äußeren Lasten hervorgerufen werden. Sie führen zu Spannungen in den Materialien, die das Versagen der Struktur verursachen können. Mittels bestimmter Berechnungsverfahren kann die Verteilung dieser inneren Kräfte in den Bauteilen ermittelt werden. Ein wichtiger Ansatz ist das Prinzip der virtuellen Leistungen (PVL), das auf der Äquivalenz von Arbeit und Energie basiert. Das PVL vereinfacht die Berechnung der komplexen Zusammenhänge in Tragwerken erheblich.

Bei der Berechnung von Tragwerken ist es darüber hinaus wichtig, verschiedene Belastungszustände zu unterscheiden. Hierzu zählen unter anderem der Normalkraft-, Schub- und Biegezustand sowie der Torsionszustand.

Mit Hilfe von Formelsammlungen oder spezieller Software, lassen sich aus den jeweiligen Belastungszuständen die entstehenden Spannungen und Verformungen berechnen. Mit diesen Werten und unter Beachtung der Materialeigenschaften, wie Festigkeit und Steifigkeit, können dann Aussagen zur Tragfähigkeit und Lebensdauer von Tragwerken getroffen werden.

Beispielsweise könnte die Berechnung der maximalen axialen Spannung \(\sigma\) in einem Träger, der einer Normalkraft \(N\) ausgesetzt ist, mit folgender Formel erfolgen: \(\sigma = \frac{N}{A}\). Hierbei stellt \(A\) die Querschnittsfläche des Trägers dar.

Formaktive und räumliche Tragwerke berechnen

Formaktive und räumliche Tragwerke stellen besondere Anforderungen an ihre Berechnung. Sie zeichnen sich durch ihre Fähigkeit aus, Lasten durch die Form der Struktur abzuleiten, und nicht durch die Materialfestigkeit allein. Formaktive Tragwerke, wie Bögen und Schalen, verteilen die Lasten aufgrund ihrer speziellen Form sehr effizient. Die Berechnung derartiger Tragwerke erfordert eine tiefgründige Kenntnis der Elastizitätstheorie und Differentialgeometrie. Eine besondere Herausforderung stellt die Bestimmung der Einflussflächen dar, die die Bereiche der Struktur darstellen, über die die Lasten abgeleitet werden. Räumliche Tragwerke sind Konstruktionen, die aus dreidimensional angeordneten Stäben, Platten oder Membranen bestehen. Beispiele hierfür sind Fachwerkträger oder Raumfachwerke. Ihre Berechnung kann mit Hilfe des Prinzips der virtuellen Leistungen oder komplexer Finite-Elemente-Methoden erfolgen.

Als anschauliches Beispiel dient hier ein einfacher formaktiver Bogen, der eine einseitige, punktförmige Last trägt. Die auf den Bogen ausgeübte Last erzeugt Druckspannungen im Bogen, die sich entlang des Bogens von der Laststelle bis hin zu den Auflagerpunkten verteilen. Je nach Material und Bogenform kann der Spannungsverlauf unterschiedlich sein. Das Verformungsverhalten und die Spannungsverteilung eines solchen Bogens kann mit Hilfe der Differentialgeometrie berechnet werden.

Fortgeschrittene Konzepte der Tragwerke

Die Ingenieurwissenschaften gehen weit über die grundlegenden Konzepte der Materialauswahl und Berechnung von Tragwerken hinaus. Fortgeschrittene Konzepte, wie die Konstruktion und Analyse räumlicher und formaktiver Tragwerke, spielen eine entscheidende Rolle in der modernen Ingenieurpraxis. Diese fortschrittlichen Strukturen erfordern eine tiefgehende Kenntnis der Mechanik und der Berechnungsmethoden.

Räumliche Tragwerke

Räumliche Tragwerke, auch bekannt als dreidimensionale oder 3D-Tragwerke, sind Strukturen, die in drei Dimensionen konstruiert und belastet sind. Sie bestehen aus einer Reihe von miteinander verbundenen, in der Regel geraden Elementen, wie Stäben, die im Raum angeordnet sind. Um räumliche Tragwerke berechnen zu können, sind besondere mathematische Modelle und Berechnungsverfahren notwendig. Hierbei werden in der Regel dreidimensionale Gleichungssysteme oder spezielle Softwarelösungen, wie bspw. Finite-Elemente-Methoden, verwendet. Ein Schlüsselkonzept in der Betrachtung räumlicher Tragwerke sind die sogenannten Knotenkräfte. Dabei handelt es sich um die Kräfte, die in den Verbindungspunkten der einzelnen Bauteile des Tragwerks, den Knoten, wirken. Diese Kräfte können durch
BiegungNormalScher
torquespanshear
ausgelöst werden. Ein zentraler Bestandteil bei der Berechnung räumlicher Tragwerke ist die Berücksichtigung der Gleichgewichtsbedingungen an den Knoten. Hierbei wird davon ausgegangen, dass die Summe aller Kräfte und Momente an jedem Knoten gleich Null ist. Diese Annahme bildet die Grundlage für die anschließende Berechnung der inneren Kräfte in den Stäben und den Knotenverformungen. Auch die Kinetik und die Materialeigenschaftender verbauten Materialien spielen eine entscheidende Rolle in der Betrachtung räumlicher Tragwerke. So hat beispielsweise eine hohe Steifigkeit des Materials einen Einfluss auf die Verteilung der Lasten im Tragwerk und auf das Verformungsverhalten des Tragwerks unter Belastung.

Formaktive Tragwerke

Formaktive Tragwerke sind eine besondere Klasse von Tragwerken, bei denen die Materialfestigkeit eine untergeordnete Rolle spielt. Viel mehr ist es die Form der Struktur selbst, die eine Lastaufnahme und -ableitung ermöglicht. Beispiele für formaktive Tragwerke sind Bogen-, Schalen- und Seilstrukturen. Ein Schlüsselkonzept bei formaktiven Tragwerken ist die Lastabtragung durch Formänderung. Hierbei wird die Belastung der Konstruktion durch die Veränderung ihrer Form abgeleitet. Durch diese Eigenschaft werden Materialfestigkeiten oftmals nur in geringem Maße beansprucht.

Ein bedeutendes Prinzip formaktiver Tragwerke ist das Funicular-Prinzip. Dieses Prinzip beschreibt die Eigenschaft einer Struktur, Lasten ausschließlich über Druckkräfte entlang der Krümmungslinien aufzunehmen und weiterzuleiten.

Die Konstruktion und Berechnung formaktiver Tragwerke erfordert eine hohe Expertise. Eine wesentliche Herausforderung hierbei liegt in der Formfindung, also der Entwicklung einer optimalen Form hinsichtlich der Tragfähigkeit und Materialausnutzung. Neben der Formfindung spielen auch Verformungen und Spannungen

eine wichtige Rolle in der Analyse formaktiver Tragwerke. Diese Faktoren müssen bei der Berechnung berücksichtigt werden. Zur Berechnung der Spannungen innerhalb formaktiver Tragwerke werden oftmals Formeln aus der Biegelinientheorie oder der Schalentheorie genutzt, je nachdem welche Form das Tragwerk hat. Ein gängiges Vorgehen ist auch die Verwendung von Finite-Elemente-Berechnungen. Letztlich sind formaktive Tragwerke oft die effizientesten und elegantesten Lösungen, wenn es um das Erfüllen von Lastfällen und Gestaltungsvorgaben geht. Daher sind sie in der modernen Architektur und im Brückenbau weit verbreitet.

Tragwerke - Das Wichtigste

  • Tragwerke: Definition und Arten - Massivtragwerk, Skelettragwerk, Flächentragwerk, Linientragwerk
  • Tragwerksberechnung: Unterscheidung zwischen äußeren und inneren Kräften
  • Vor- und Nachteile von Tragwerken im Bauingenieurwesen: Stabilität und Sicherheit, Anpassbarkeit, Optimierung der Materialverwendung, hoher Planungsaufwand, Fachwissen erforderlich
  • Hauptmaterialien für Tragwerke: Holz, Stahl und Beton
  • Berechnung von Formaktiven und räumlichen Tragwerken
  • Definition und Besonderheiten von räumlichen Tragwerken

Häufig gestellte Fragen zum Thema Tragwerke

Es gibt verschiedene Arten von Tragkonstruktionen, darunter Balken, Platten, Schalen, Rahmen, Bögen, Seile und Membranen. Auch Kombinationen dieser Grundtypen sind möglich.

Zu den Tragwerken gehören Balken, Platten, Fachwerke, Bögen, Schalen und Rahmentragwerke. Sie können in Gebäuden, Brücken, Türmen oder anderen Strukturen verwendet werden.

Es gibt eine Vielzahl von Tragsystemen, darunter Skelettbau, Massivbau, Plattenbau, Scheibenbau, Hängekonstruktionen, Fachwerkkonstruktionen und Membrankonstruktionen. Diese unterscheiden sich hinsichtlich der Art und Weise, wie sie Lasten aufnehmen und weiterleiten.
Mehr zum ThemaBauingenieurwesen

Was ist die Definition von 'Tragwerk' im Bauingenieurwesen?

Ein Tragwerk wird im Bauingenieurwesen als eine strukturelle Zusammenstellung von Bauteilen definiert, die dazu ausgelegt ist, Lasten aufzunehmen und sicher in den Baugrund abzuleiten.

Welche Hauptbauteile sind Teil eines Tragwerks?

Zu den Hauptbauteilen eines Tragwerks zählen vorrangig Stützen, die vertikale Lasten abtragen, Träger, die horizontale Lasten aufnehmen und in die Stützen und den Baugrund leiten, und aussteifende Elemente, die gegen horizontale Lasten wie Windkräfte sichern.

Was sind zwei wichtige Vorteile von Tragwerken im Bauingenieurwesen?

Zwei wichtige Vorteile von Tragwerken sind die Stabilität und Sicherheit, die sie Bauwerken bieten, sowie ihre Anpassbarkeit an spezifische Anforderungen von Form und Belastung.

Was sind zwei Nachteile von Tragwerken im Bauingenieurwesen?

Zwei Nachteile von Tragwerken sind der hohe Planungsaufwand, da sie für jedes Bauvorhaben individuell konstruiert werden müssen, und die Abhängigkeit von spezialisiertem Fachwissen, da Fehler fatale Folgen haben können.

Welche drei Materialien werden häufig für Tragwerke verwendet und wofür sind sie jeweils gut geeignet?

Die drei häufig verwendeten Materialien für Tragwerke sind Holz, Stahl und Beton. Holz ist nachhaltig, robust und gut bearbeitbar. Stahl zeichnet sich durch seine hohe Festigkeit, Formbarkeit und Langlebigkeit aus. Beton wird wegen seiner Festigkeit, Feuerbeständigkeit und einem guten Preis-Leistungs-Verhältnis verwendet.

Was sind die Nachteile der Verwendung von Holz, Stahl und Beton für Tragwerke?

Holz ist empfindlich gegenüber Witterungseinflüssen und Schädlingen, Stahl ist korrosionsanfällig und erfordert regelmäßige Wartung, und Beton hat eine begrenzte Zugfestigkeit und eine lange Aushärtezeit.

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Finde passende Lernmaterialien für deine Fächer

Entdecke Lernmaterial in der StudySmarter-App

Google Popup

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!