BMT at TU München | Flashcards & Summaries

Select your language

Suggested languages for you:
Log In Start studying!

It looks like you are in the US?
We have a website for your region.

Take me there

Lernmaterialien für BMT an der TU München

Greife auf kostenlose Karteikarten, Zusammenfassungen, Übungsaufgaben und Altklausuren für deinen BMT Kurs an der TU München zu.

TESTE DEIN WISSEN

What does it mean that Transformation T is global?

Lösung anzeigen
TESTE DEIN WISSEN
  • Is the same for any point p
  • Can be described by just a few numbers (parameters)
Lösung ausblenden
TESTE DEIN WISSEN

2D Linear Transformations:

Lösung anzeigen
TESTE DEIN WISSEN
  • Identity
  • Scaling
  • Rotation
  • Mirror
  • Shear
Lösung ausblenden
TESTE DEIN WISSEN

Transformations can be combined by ...?

What is important?

Lösung anzeigen
TESTE DEIN WISSEN

Transformations can be combined by matrix multiplication (matrix composition).

The ordering here is IMPORTANT!

Lösung ausblenden
TESTE DEIN WISSEN

Forward Warping

Lösung anzeigen
TESTE DEIN WISSEN

Send each pixel f(x, y) to its corresponding location
(x', y')= T(x, y) in the second image.

And use Splatting to color the pixels

Lösung ausblenden
TESTE DEIN WISSEN

Problem Forward Warping?

Lösung anzeigen
TESTE DEIN WISSEN

Destination picture might have holes

Lösung ausblenden
TESTE DEIN WISSEN

Inverse (Backward) Warping

Lösung anzeigen
TESTE DEIN WISSEN

Get each pixel g(x', y') from its corresponding location
(x, y)= T^-1(x', y') in the first image.

Use Interpolation to color the pixel.

Lösung ausblenden
TESTE DEIN WISSEN

Pro and Con Inverse Warping

Lösung anzeigen
TESTE DEIN WISSEN

+ ensures that no holes occur

- requires and invertible warp function

Lösung ausblenden
TESTE DEIN WISSEN

Non-Parametric (Local) Image Warping

Lösung anzeigen
TESTE DEIN WISSEN

Image Warping using Vector Fields


Lösung ausblenden
TESTE DEIN WISSEN

Image Warping using Vector Fields

Lösung anzeigen
TESTE DEIN WISSEN

• Let (vx, vy)= F(x, y) be an arbitrary vector field and I an image.
• Question: How can we compute the value at I(x + vx, y + vy)?
• Answer: Use forward warping to propagate the pixels to a new
location.
• Problem: Same as before, resulting image will contain holes.

-> Solution:

  • Answer 2: Use inverse warping with bilinear interpolation.
  • Need to invert vector field F(x, y)
  • Look up source pixels using F(x', y')^-1
  • Interpolate using one of the presented models, e.g. bilinear


-> Vector Fields transform each pixel separately

-> Inverse warping is better, but requires invertible vector field

Lösung ausblenden
TESTE DEIN WISSEN

Good interpolation techniques attempt to find an optimal balance between three undesirable artifacts:

Lösung anzeigen
TESTE DEIN WISSEN

edge halos

blurring

aliasing

Lösung ausblenden
TESTE DEIN WISSEN

Bilinear Interpolation: Pros and Cons

Lösung anzeigen
TESTE DEIN WISSEN

No jagged artifacts as in Nearest Neighbor

BUT blurry edges

Lösung ausblenden
TESTE DEIN WISSEN

Transformation T is a coordinate-changing machine:

Lösung anzeigen
TESTE DEIN WISSEN

p' = T(p) (p = 2D vector)

Lösung ausblenden
  • 441980 Karteikarten
  • 10174 Studierende
  • 440 Lernmaterialien

Beispielhafte Karteikarten für deinen BMT Kurs an der TU München - von Kommilitonen auf StudySmarter erstellt!

Q:

What does it mean that Transformation T is global?

A:
  • Is the same for any point p
  • Can be described by just a few numbers (parameters)
Q:

2D Linear Transformations:

A:
  • Identity
  • Scaling
  • Rotation
  • Mirror
  • Shear
Q:

Transformations can be combined by ...?

What is important?

A:

Transformations can be combined by matrix multiplication (matrix composition).

The ordering here is IMPORTANT!

Q:

Forward Warping

A:

Send each pixel f(x, y) to its corresponding location
(x', y')= T(x, y) in the second image.

And use Splatting to color the pixels

Q:

Problem Forward Warping?

A:

Destination picture might have holes

Mehr Karteikarten anzeigen
Q:

Inverse (Backward) Warping

A:

Get each pixel g(x', y') from its corresponding location
(x, y)= T^-1(x', y') in the first image.

Use Interpolation to color the pixel.

Q:

Pro and Con Inverse Warping

A:

+ ensures that no holes occur

- requires and invertible warp function

Q:

Non-Parametric (Local) Image Warping

A:

Image Warping using Vector Fields


Q:

Image Warping using Vector Fields

A:

• Let (vx, vy)= F(x, y) be an arbitrary vector field and I an image.
• Question: How can we compute the value at I(x + vx, y + vy)?
• Answer: Use forward warping to propagate the pixels to a new
location.
• Problem: Same as before, resulting image will contain holes.

-> Solution:

  • Answer 2: Use inverse warping with bilinear interpolation.
  • Need to invert vector field F(x, y)
  • Look up source pixels using F(x', y')^-1
  • Interpolate using one of the presented models, e.g. bilinear


-> Vector Fields transform each pixel separately

-> Inverse warping is better, but requires invertible vector field

Q:

Good interpolation techniques attempt to find an optimal balance between three undesirable artifacts:

A:

edge halos

blurring

aliasing

Q:

Bilinear Interpolation: Pros and Cons

A:

No jagged artifacts as in Nearest Neighbor

BUT blurry edges

Q:

Transformation T is a coordinate-changing machine:

A:

p' = T(p) (p = 2D vector)

BMT

Erstelle und finde Lernmaterialien auf StudySmarter.

Greife kostenlos auf tausende geteilte Karteikarten, Zusammenfassungen, Altklausuren und mehr zu.

Jetzt loslegen

Das sind die beliebtesten StudySmarter Kurse für deinen Studiengang BMT an der TU München

Für deinen Studiengang BMT an der TU München gibt es bereits viele Kurse, die von deinen Kommilitonen auf StudySmarter erstellt wurden. Karteikarten, Zusammenfassungen, Altklausuren, Übungsaufgaben und mehr warten auf dich!

Das sind die beliebtesten BMT Kurse im gesamten StudySmarter Universum

BMT 1

Leibniz Universität Hannover

Zum Kurs
BMC

Universidade do Minho

Zum Kurs

Die all-in-one Lernapp für Studierende

Greife auf Millionen geteilter Lernmaterialien der StudySmarter Community zu
Kostenlos anmelden BMT
Erstelle Karteikarten und Zusammenfassungen mit den StudySmarter Tools
Kostenlos loslegen BMT