Big Data & Data Science at FOM Hochschule Für Oekonomie & Management | Flashcards & Summaries

Select your language

Suggested languages for you:
Log In Start studying!

Lernmaterialien für Big Data & Data Science an der FOM Hochschule für Oekonomie & Management

Greife auf kostenlose Karteikarten, Zusammenfassungen, Übungsaufgaben und Altklausuren für deinen Big Data & Data Science Kurs an der FOM Hochschule für Oekonomie & Management zu.

TESTE DEIN WISSEN

Common Variable Types

Lösung anzeigen
TESTE DEIN WISSEN

Qualitative Variable

Lösung ausblenden
TESTE DEIN WISSEN
What measurement scales are correct?
Lösung anzeigen
TESTE DEIN WISSEN
Nominal scale
Lösung ausblenden
TESTE DEIN WISSEN
What expresses the nominal scale?
Lösung anzeigen
TESTE DEIN WISSEN
Characteristic attributes can be distinguished, eg gender. A subtype of it with only two categories (eg male/female) is called dichotomous
Lösung ausblenden
TESTE DEIN WISSEN

the gradient descent...

Lösung anzeigen
TESTE DEIN WISSEN

...is an iterative optimization algorithm which means that in order to get the best result it is necessary to pass over the training set for a multiple of times in a way

Lösung ausblenden
TESTE DEIN WISSEN
What expresses the ordinal scale?
Lösung anzeigen
TESTE DEIN WISSEN
Characteristic attributes can be distinguished and ranked. Eg educational achivement.

! Intervals between the values can neither be compared nor interpreted
Lösung ausblenden
TESTE DEIN WISSEN

What are the main key facts of reinforcement learning?

Lösung anzeigen
TESTE DEIN WISSEN
  • Algorithms from the group of reinforcement learning produce agents rather than classical models that receive information from the environment and react to it by performing an action
  • information that the agent receives from the environment in form of numerical data is called state which is stored and then used for choosing the right action
  • The result of the action, the agent receives a reward that can be either positive or negative which is then used as a feedback to the agent in order to update its parameters and change its future actions
  • process of learning and training is a process of trial and error 
    • agent finds itself in various states and gets punished every time it takes the wrong action and thus starts learning how to take better actions
Lösung ausblenden
TESTE DEIN WISSEN
What is a Task and what is the character?
Lösung anzeigen
TESTE DEIN WISSEN
  • Defined as a job a computer program has to learn in order to execute it
  • Learning itself is not considered as a discrete task
  • eg Teaching a computer in how to play checkers, then playing checkers itself is the Task T
Lösung ausblenden
TESTE DEIN WISSEN
What expresses the metric scale?
Lösung anzeigen
TESTE DEIN WISSEN
  • Characteristic attributes can be distinguished and ranked
  • Intervals can be compared
  • Metric scale divides further into interval and ratio scale
  • Ratio Scale has a naturally given point of origin (eg body weight)
  • Interval scale has an artificially given point of origin (eg calculation times)




Lösung ausblenden
TESTE DEIN WISSEN

What is the algorithm called for calculating the path of the steepest descent?

Lösung anzeigen
TESTE DEIN WISSEN

Gradient Descent

Lösung ausblenden
TESTE DEIN WISSEN

Of what consist the input-output combinations of supervised learning datasets?

Lösung anzeigen
TESTE DEIN WISSEN
Features (used to make predictions) and an expected outcome called label
Lösung ausblenden
TESTE DEIN WISSEN
Choose the regression algorithm!
Lösung anzeigen
TESTE DEIN WISSEN
linear regression
Lösung ausblenden
TESTE DEIN WISSEN
How does the Loss Function behave if the predictions deviate too much from the actual results?
Lösung anzeigen
TESTE DEIN WISSEN
If for a given set of parameters the predictions deviate too much from the actual results, the loss function will output a higher number compared to predictions that are good
Lösung ausblenden
  • 439617 Karteikarten
  • 10656 Studierende
  • 362 Lernmaterialien

Beispielhafte Karteikarten für deinen Big Data & Data Science Kurs an der FOM Hochschule für Oekonomie & Management - von Kommilitonen auf StudySmarter erstellt!

Q:

Common Variable Types

A:

Qualitative Variable

Q:
What measurement scales are correct?
A:
Nominal scale
Q:
What expresses the nominal scale?
A:
Characteristic attributes can be distinguished, eg gender. A subtype of it with only two categories (eg male/female) is called dichotomous
Q:

the gradient descent...

A:

...is an iterative optimization algorithm which means that in order to get the best result it is necessary to pass over the training set for a multiple of times in a way

Q:
What expresses the ordinal scale?
A:
Characteristic attributes can be distinguished and ranked. Eg educational achivement.

! Intervals between the values can neither be compared nor interpreted
Mehr Karteikarten anzeigen
Q:

What are the main key facts of reinforcement learning?

A:
  • Algorithms from the group of reinforcement learning produce agents rather than classical models that receive information from the environment and react to it by performing an action
  • information that the agent receives from the environment in form of numerical data is called state which is stored and then used for choosing the right action
  • The result of the action, the agent receives a reward that can be either positive or negative which is then used as a feedback to the agent in order to update its parameters and change its future actions
  • process of learning and training is a process of trial and error 
    • agent finds itself in various states and gets punished every time it takes the wrong action and thus starts learning how to take better actions
Q:
What is a Task and what is the character?
A:
  • Defined as a job a computer program has to learn in order to execute it
  • Learning itself is not considered as a discrete task
  • eg Teaching a computer in how to play checkers, then playing checkers itself is the Task T
Q:
What expresses the metric scale?
A:
  • Characteristic attributes can be distinguished and ranked
  • Intervals can be compared
  • Metric scale divides further into interval and ratio scale
  • Ratio Scale has a naturally given point of origin (eg body weight)
  • Interval scale has an artificially given point of origin (eg calculation times)




Q:

What is the algorithm called for calculating the path of the steepest descent?

A:

Gradient Descent

Q:

Of what consist the input-output combinations of supervised learning datasets?

A:
Features (used to make predictions) and an expected outcome called label
Q:
Choose the regression algorithm!
A:
linear regression
Q:
How does the Loss Function behave if the predictions deviate too much from the actual results?
A:
If for a given set of parameters the predictions deviate too much from the actual results, the loss function will output a higher number compared to predictions that are good
Big Data & Data Science

Erstelle und finde Lernmaterialien auf StudySmarter.

Greife kostenlos auf tausende geteilte Karteikarten, Zusammenfassungen, Altklausuren und mehr zu.

Jetzt loslegen

Das sind die beliebtesten StudySmarter Kurse für deinen Studiengang Big Data & Data Science an der FOM Hochschule für Oekonomie & Management

Für deinen Studiengang Big Data & Data Science an der FOM Hochschule für Oekonomie & Management gibt es bereits viele Kurse, die von deinen Kommilitonen auf StudySmarter erstellt wurden. Karteikarten, Zusammenfassungen, Altklausuren, Übungsaufgaben und mehr warten auf dich!

Das sind die beliebtesten Big Data & Data Science Kurse im gesamten StudySmarter Universum

Data Science

IU Internationale Hochschule

Zum Kurs
Data Science & BI

International School of Management

Zum Kurs

Die all-in-one Lernapp für Studierende

Greife auf Millionen geteilter Lernmaterialien der StudySmarter Community zu
Kostenlos anmelden Big Data & Data Science
Erstelle Karteikarten und Zusammenfassungen mit den StudySmarter Tools
Kostenlos loslegen Big Data & Data Science