|
|
Ionenbindungen

Chemische Bindungen sind wie Beziehungen. Es handelt sich entweder um ein Geben und Nehmen oder alles wird geteilt. Bindungen sind die Grundlage für alle Moleküle, die wir kennen. Atome können sich auch aneinanderlagern und dadurch Vorteile in Bezug auf ihre Stabilität ziehen. Deshalb assoziieren wir mit einer Bindung oftmals etwas Starkes. Die Ionenbindung schafft diese Art von Stabilität, indem zwischen Metallen und Nichtmetallen, Elektronen ausgetauscht werden.

Mockup Schule

Entdecke über 50 Millionen kostenlose Lernmaterialien in unserer App.

Ionenbindungen

Illustration

Lerne mit deinen Freunden und bleibe auf dem richtigen Kurs mit deinen persönlichen Lernstatistiken

Jetzt kostenlos anmelden

Nie wieder prokastinieren mit unseren Lernerinnerungen.

Jetzt kostenlos anmelden
Illustration

Chemische Bindungen sind wie Beziehungen. Es handelt sich entweder um ein Geben und Nehmen oder alles wird geteilt. Bindungen sind die Grundlage für alle Moleküle, die wir kennen. Atome können sich auch aneinanderlagern und dadurch Vorteile in Bezug auf ihre Stabilität ziehen. Deshalb assoziieren wir mit einer Bindung oftmals etwas Starkes. Die Ionenbindung schafft diese Art von Stabilität, indem zwischen Metallen und Nichtmetallen, Elektronen ausgetauscht werden.

Ionenbindung – Definition

Um Dich in das Thema einzuführen, folgt jetzt vorerst eine kurze Definition der Ionenbindung. Im Laufe dieser Erklärung erfährst Du dann genaueres zum Thema und der Entstehung von Ionen. Die Ionenbindung ist eine der drei Primärbindungen, die es in der anorganischen Chemie gibt. Unter Primärbindungen versteht man starke Wechselwirkungen unter Atomen.

Ionenbindungen sind chemische Bindungen zwischen Metallen und Nichtmetallen, die auf elektrostatischer Anziehung beruhen.

Bei den Ionenbindungen ziehen sich Kationen (positiv geladene Ionen) und Anionen (negativ geladene Ionen) elektrostatisch an.

Ionenbindung - Einfach erklärt

Atome liegen im Grundzustand als Elemente vor, die genauso viele Elektronen wie Protonen im Atomkern haben. Die Elemente sind damit neutral und haben keine Ladung.

Aus Gründen der Energiearmut, die angestrebt wird, nehmen Elemente Elektronen auf oder geben Elektronen ab, bis sie auf ihrer Außenschale genauso viele Elektronen haben wie ein Edelgas. Edelgase sind die Elemente der achten Hauptgruppe im Periodensystem und sie sind sehr reaktionsträge. Wegen des Strebens nach Energiearmut geben Elemente Elektronen ab oder nehmen welche auf, je nachdem, was weniger Energie benötigt beziehungsweise bei welchem Vorgang weniger Elektronen bewegt werden müssen. Ein Beispiel dazu folgt im Laufe der Erklärung.

Edelgase erfüllen die Oktettregel. Nach dieser Regel ist die äußerste Elektronenschale (Valenzelektronenschale) mit acht Elektronen besetzt. Dies entspricht der Edelgaskonfiguration, die günstig und energiearm ist. Deswegen wird sie von Elementen angestrebt.

Das Element Helium bildet die Ausnahme. Helium hat nur eine Elektronenschale, auf der sich zwei Elektronen befinden.

Dabei passt es natürlich, wenn zwei Elemente aufeinandertreffen, von denen eines eher Elektronen abgeben und das andere eher Elektronen aufnehmen möchte. Das Element, das seine Elektronen abgibt, ist dann positiv geladen (Kation mit Elektronenmangel). Das Element, das Elektronen eher aufnimmt, ist negativ geladen (Anion mit Elektronenüberschuss).

Damit eine Ionenbindung entstehen kann, muss ein Elektronegativitätsunterschied (ΔEN) der größer ist als 1,7 zwischen den beiden Elementen vorliegen. Die Elektronegativität ist ein Maß für die Stärke, mit der Bindungselektronen zu einem Element gezogen werden. Um die Differenz zu berechnen, ziehst Du den kleineren EN-Wert der beteiligten Atome von dem größeren EN-Wert ab, damit die Differenz immer positiv ist. Ist die Differenz niedriger als 1,7, so handelt es sich wahrscheinlich um kovalente Bindungen.

Je stärker Elemente Elektronen anziehen, desto höher wird ihr Wert für die Elektronegativität. Dabei gilt Fluor als Element mit der höchsten Anziehungskraft als Richtlinie für die anderen Elemente.

Das Element mit der höheren Elektronegativität bildet dabei das Anion und das mit der geringeren Elektronegativität bildet das Kation. Nach Elektronenübertragung liegen also Kation und Anion vor, die sich dann gegenseitig elektrostatisch anziehen und damit über eine ionische Bindung zusammengehalten werden. Fast alle ionischen Bindungen werden als Salze bezeichnet. Die Kationen und Anionen ordnen sich bei Salzen in einem regelmäßigen Kristallgitter an.

Ionenbindung - Beispiele

Am besten kann man Ionenbindungen am Beispiel von Salzen erklären. Natriumchlorid (Kochsalz) besteht aus den Elementen Natrium und Chlor. Das Natriumatom besitzt ein Außenelektron, was abgegeben werden kann, sodass es die Oktettregel erfüllt. Das Chloratom besitzt sieben Außenelektronen. Wenn es ein Elektron aufnimmt, besitzt es auch acht Außenelektronen und erfüllt so auch die Oktettregel. Das vom Natrium abgegebene Elektron wird also vom Chlor aufgenommen, wodurch ein positiv geladenes Natriumion und ein negativ geladenes Chloridion entsteht.

Natrium befindet sich im Periodensystem in der ersten Hauptgruppe und hat somit ein Außenelektron. Es gehört zu den Alkalimetallen und hat eine Elektronegativität von 0,93. Chlor befindet sich in der siebten Hauptgruppe und ist ein Nichtmetall. Chlor hat eine Elektronegativität von 3,16.

Die Elektronegativitätsdifferenz zwischen Natrium und Chlor beträgt:

ΔEN = 3,16 - 0,93 = 2,23

Somit ist die Differenz größer als 1,7.

Ein weiteres Beispiel ist Aluminiumchlorid. Ein Aluminiumatom hat drei Außenelektronen. Wenn es diese drei Elektronen abgibt, erfüllt es die Oktettregel. Es entsteht ein dreifach positiv geladenes Aluminiumion. Das Aluminiumion kann mit negativen Chloridionen zu einer Ionenverbindung vereint werden. Damit die Oktettregel für alle Beteiligten erfüllt ist, werden drei Chloridionen benötigt. Denn das Aluminium hat drei Elektronen abzugeben und das Chlor kann nur eines aufnehmen. Es entsteht das Salz Aluminiumchlorid (AlCl3).

Aluminium befindet sich im Periodensystem in der dritten Hauptgruppe und hat somit drei Außenelektronen. Es gehört zu den Metallen und hat eine Elektronegativität von 1,61. Chlor befindet sich in der siebten Hauptgruppe und ist ein Nichtmetall. Chlor hat eine Elektronegativität von 3,16.

Die Elektronegativitätsdifferenz zwischen Aluminium und Chlor beträgt:

ΔEN = 3 x (3,16) - 1,61 = 7,87

Somit ist die Differenz größer als 1,7.

Aluminiumchlorid ist eine Substanz, die vielen Deos zugesetzt wird. Wenn aluminiumhaltige Deos in die Achselhöhle gesprüht wird, dann fällt das Aluminiumchlorid dort Proteine aus. "Ausfällen" bedeutet, dass sich Ministopfen bilden, die die Schweißporen verstopfen, damit kein Schweiß mehr austritt. Es gibt immer mehr Deos ohne Aluminiumsalze, weil sie im Verdacht stehen, schädlich zu sein.

Struktur einer Ionenbindung

Ionenverbindungen bilden sogenannte Kristallgitter. So besteht zum Beispiel Natriumchlorid aus Kristallen, die aus Natriumionen und Chloridionen dreidimensional aufgebaut sind. Zusammengehalten wird der Kristall durch die elektrostatische Anziehung. Also durch die Anziehung zwischen positiven und negative Ionen. Die Ionen ordnen sich dabei immer so an, dass die elektrostatische Anziehung zwischen entgegengesetzt geladenen Ionen so groß wie möglich wird und die Abstoßung zwischen gleich geladenen Ionen, so klein wie möglich.

Ionenbindung Ionengitter NaCl StudySmarterAbbildung 3: Gitterstruktur von Natriumchlorid

Ionenbindungen - Eigenschaften

Ionenbindungen weisen folgende Eigenschaften auf:

  • Sie bilden harte und spröde Verbindungen aus.

  • Die Verbindungen liegen als Kristalle mit typischen Strukturen vor.

  • Sie haben hohe Schmelztemperaturen.

  • Sie lösen sich in polaren Lösungsmitteln.

  • Sie leiten elektrischen Strom sowohl in geschmolzener, als auch in gelöster Form.

Ionische Verbindungen haben aufgrund starker Anziehungskräfte zwischen den Ionen hohe Schmelz- und Siedepunkte. Um die Ionen zu trennen, ist daher eine große Menge an Wärmeenergie erforderlich. Weiterhin sind Ionenbindungen im gelösten Zustand sehr gute elektrische und thermische Leiter, nicht aber im festen Zustand. Elektrische Leitung erfordert frei bewegliche Teilchen, die im Ionengitter fehlen.

Ionenbindungen – Das Wichtigste

  • Salze bestehen aus Ionen und werden durch Ionenbindungen zusammengehalten.

  • Sie beruhen auf den elektrostatischen Wechselwirkungen, die durch die entgegengesetzt geladenen Ionen entstehen.

  • Ionenverbindungen liegen in Kristallgittern vor.

  • Damit eine Ionenbindung entstehen kann, muss ein Elektronegativitätsunterschied (ΔEN) der größer ist als 1,7 vorliegen

  • Ionenverbindungen bilden harte und spröde Verbindungen aus, haben hohe Schmelztemperaturen, lösen sich in polaren Lösungsmitteln und leiten elektrischen Strom sowohl in geschmolzener, als auch in gelöster Form.

Nachweise

  1. Uni-Heidelberg: Chemische Bindung (23.06.2022)
  2. Mortimer. (1996). Chemie - Das Basiswissen der Chemie. Thieme Verlag.

Häufig gestellte Fragen zum Thema Ionenbindungen

Eine Bindung die auf elektrostatischen Wechselwirkungen beruht die durch entgegengesetzte Ladungen entstehen.

Ionenbindungen sind chemische Bindungen zwischen Metallen und Nichtmetallen, die auf elektrostatischer Anziehung beruhen. 

Wenn die Ionen durch eine Bindung eine stabile Elektronenkonfiguration erreichen und ein Ionengitter ausbilden können. Zudem sollte die Differenz der Elektronegativität höher als 1,7 sein.

Alle Elemente der Hauptgruppen, ausgenommen der Edelgase gehen Ionenbindungen ein.

Nebengruppenelemente eher seltener.

Teste dein Wissen mit Multiple-Choice-Karteikarten

Welche elektrostatischen Kräfte sind bei der Hydratisierung aktiv?

Welcher Zusammenhang hinsichtlich Hydratationsenergie und Ionen ist richtig?

Wann ist ein Salz wasserlöslich und wann ist es wasserunlöslich?

Weiter

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App! Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Melde dich an für Notizen & Bearbeitung. 100% for free.

Entdecke Lernmaterial in der StudySmarter-App

Google Popup

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!

Die erste Lern-App, die wirklich alles bietet, was du brauchst, um deine Prüfungen an einem Ort zu meistern.

  • Karteikarten & Quizze
  • KI-Lernassistent
  • Lernplaner
  • Probeklausuren
  • Intelligente Notizen
Schließ dich über 22 Millionen Schülern und Studierenden an und lerne mit unserer StudySmarter App!