Neurosignale an der TU München

Karteikarten und Zusammenfassungen für Neurosignale an der TU München

Arrow Arrow

Komplett kostenfrei

studysmarter schule studium
d

4.5 /5

studysmarter schule studium
d

4.8 /5

studysmarter schule studium
d

4.5 /5

studysmarter schule studium
d

4.8 /5

Lerne jetzt mit Karteikarten und Zusammenfassungen für den Kurs Neurosignale an der TU München.

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

What is the job of the cornea and lens?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

Focusing a camera changes the distance between the lens and the film. How do we the eyes accomplish this?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

What  two kinds of light-sensitive photoreceptor does the retina contain?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

What are microsaccades? Why are they needed?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

How are the extrinsic muscles of the eye controlled?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

What is the occipital lobe?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

How is the motor control of the extraocular muscles detected?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

What is EOG? Briefly describe the properties of the signal. And what is it used for?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

What is the potential between the cornea and retina called? What values does it normally have?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

Advantage of electro-biological signals over imaging techniques.

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

How do you filter the EOG signal?

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

Briefly describe the saccade detection algorithm.

Kommilitonen im Kurs Neurosignale an der TU München. erstellen und teilen Zusammenfassungen, Karteikarten, Lernpläne und andere Lernmaterialien mit der intelligenten StudySmarter Lernapp. Jetzt mitmachen!

Jetzt mitmachen!

Flashcard Flashcard

Beispielhafte Karteikarten für Neurosignale an der TU München auf StudySmarter:

Neurosignale

What is the job of the cornea and lens?

They act like a camera and bend the light rays entering the eye to focus them on the retina.

Neurosignale

Focusing a camera changes the distance between the lens and the film. How do we the eyes accomplish this?

Our eyes accomplish this feat by changing the shape
of the lens. The ciliary muscle, a circular muscle attached to the lens by a suspensory ligament, contracts, reducing tension on
the suspensory ligament thereby allowing the lens to thicken, when focusing on nearby objects. The ciliary muscle relaxes to
make the lens thinner and focus on objects that are far away.

Neurosignale

What  two kinds of light-sensitive photoreceptor does the retina contain?

Cones and Rods. Cones are used for day vision and color vision. They are most concentrated in the fovea,
where focused light produces the sharpest image. Rods are used for vision in dim light and for the detection of movement in the visual field. Rods are concentrated in the periphery of the retina, hence, the tendency to focus away from the fovea (“look
to the side of the eye”) in darkness.

Neurosignale

What are microsaccades? Why are they needed?

Eyes movements in a repetitive, involuntary, imperceptible, minute, jerky manner are called
microsaccades.

These movements counteract perceptual fading

and thus sharpen visual acuity.

Neurosignale

How are the extrinsic muscles of the eye controlled?

Contractions of the extrinsic muscles are controlled by way of motor pathways in the brain and three pairs (one right, one left) of cranial nerves. 


(Addition: ranial Nerve III, the oculomotor nerve, supplies all extrinsic eye muscles except the superior oblique and the lateral rectus. Cranial Nerve IV, the trochlear nerve, supplies the superior oblique. Cranial Nerve VI, the abducens nerve, innervates the lateral rectus.

Neurosignale

What is the occipital lobe?

The occipital lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The occipital lobe is the visual processing center of the mammalian brain containing most of the anatomical region of the visual cortex.

Neurosignale

How is the motor control of the extraocular muscles detected?

Cortical activity associated with motor control of the
extraocular muscles can be detected and recorded using conventional EEG techniques.

Neurosignale

What is EOG? Briefly describe the properties of the signal. And what is it used for?

Electrooculography is a technique for recording voltage changes as the eyeballs move in their orbits. The electrooculogram (EOG,) is an electroencephalographic record of the voltage changes obtained while the subject, without moving the head, moves the eyes from one fixation point to another within the visual field. The EOG signal is linearly proportional to eye movement, changing approximately
20 microvolts for each degree of eye movement. The EOG signal ranges from 0.05 – 3.5 mV in humans, and is the result of a
number of factors, including eyeball rotation and movement, eyelid movement, EEG, head movement, and changing
luminescence.

Application: 

  1. to assess visual defects involving neuromuscular control of the eyes, such as in diagnosis and treatment success of sixth nerve palsy (paralysis of the lateral rectus). 
  2. employed in the diagnosis and assessment of eye disorders. 
  3. the design of robotics, such as motorized wheelchairs and other devices that can be guided or otherwise controlled by the movement of the subject’s eyes


Neurosignale

What is the potential between the cornea and retina called? What values does it normally have?

The potential between the front and the back of the eyeball, called the corneal – retinal potential (CRP,) is about 0.4 – 1.0 mV, and is primarily due to hyperpolarizations and depolarizations of nerve cells in the  retina.

Neurosignale

Advantage of electro-biological signals over imaging techniques.

1. Electro‐biological measurements are silent and feature a high temporal resolution, making them extremely suitable for the ongoing monitoring of electrophysiological responses.

2. Measuring signals from electrodes placed on the skin is the non‐ invasiveness of the procedure.

Disadvantages:

1. Prone to artifacts, the nature of which depends strongly on where they are placed. Those artifacts can be related to both, the human whose responses are being measured (ex. Sweat, movement of other muscles), as well as the measurement devices as such.

2. The potential differences to be measured tend to be small

3. The recorded signals are analog signals and need to be converted to the digital domain.

Neurosignale

How do you filter the EOG signal?

The EOG signal contains high-frequency noise and low-frequency baseline drift and both can be removed using a bandpass filter.

Neurosignale

Briefly describe the saccade detection algorithm.

The derivative of the lowpass‐filtered EOG signal
(VLp[n]) is computed and smoothed with a moving average filter. The smoothed derivative is passed through a thresholding function that converts samples with absolute value exceeding a predefined threshold to 1, while those with absolute values below the threshold are converted to 0. This binary sequence is then delayed and subtracted from itself, yielding a sequence that contains 1s and ‐1s whenever the absolute low‐pass filtered derivative crosses the threshold in the positive (saccade start) and negative (saccade end) directions respectively, and 0s otherwise.

Melde dich jetzt kostenfrei an um alle Karteikarten und Zusammenfassungen für Neurosignale an der TU München zu sehen

Singup Image Singup Image
Wave

Andere Kurse aus deinem Studiengang

Für deinen Studiengang Neurosignale an der TU München gibt es bereits viele Kurse auf StudySmarter, denen du beitreten kannst. Karteikarten, Zusammenfassungen und vieles mehr warten auf dich.

Zurück zur TU München Übersichtsseite

Was ist StudySmarter?

Was ist StudySmarter?

StudySmarter ist eine intelligente Lernapp für Studenten. Mit StudySmarter kannst du dir effizient und spielerisch Karteikarten, Zusammenfassungen, Mind-Maps, Lernpläne und mehr erstellen. Erstelle deine eigenen Karteikarten z.B. für Neurosignale an der TU München oder greife auf tausende Lernmaterialien deiner Kommilitonen zu. Egal, ob an deiner Uni oder an anderen Universitäten. Hunderttausende Studierende bereiten sich mit StudySmarter effizient auf ihre Klausuren vor. Erhältlich auf Web, Android & iOS. Komplett kostenfrei. Keine Haken.

Awards

Bestes EdTech Startup in Deutschland

Awards
Awards

European Youth Award in Smart Learning

Awards
Awards

Bestes EdTech Startup in Europa

Awards
Awards

Bestes EdTech Startup in Deutschland

Awards
Awards

European Youth Award in Smart Learning

Awards
Awards

Bestes EdTech Startup in Europa

Awards