Kommilitonen im Kurs Grundlagen der KI an der TU München. erstellen und teilen Zusammenfassungen, Karteikarten, Lernpläne und andere Lernmaterialien mit der intelligenten StudySmarter Lernapp. Jetzt mitmachen!
Jetzt mitmachen!
Grundlagen der KI
You can recall the definition and understand the basic concept of rational agents.
Rationality
A system is rational if it does the “right thing”, i.e., has an ideal performance (performance measures are not always available).
Rational Agent
For each possible percept sequence, a rational agent should select an action that is expected to maximize its performance measure, given the prior percept sequence and its built-in knowledge.
Grundlagen der KI
You understand the difference between omniscience, learning, and autonomy.
Omniscient agent
An omniscient agent knows the actual outcome of its actions, which is impossible in reality.
Example: Just imagine you know the outcome of betting money on something.
A rational agent (!= omniscient agent) maximizes expected performance.
Learning
Rational agents are able to learn from perception, i.e., they improve their knowledge of the environment over time.
Autonomy
In AI, a rational agent is considered more autonomous if it is less dependent on prior knowledge and uses newly learned abilities instead.
Grundlagen der KI
You know how to categorize task environments and can evaluate the difficulty of given tasks
Fully observable vs. partially observable
An environment is fully observable if the agent can detect the complete state of the environment, and partially observable otherwise.
Example: The vacuum-cleaner world is partially observable since the robot only knows whether the current square is dirty.
Fully observable often in games
Grundlagen der KI
You know how to categorize task environments and can evaluate the difficulty of given tasks
Single agent vs. multi agent
An environment is a multi agent environment if it contains several agents, and a single agent environment otherwise.
Example: The vacuum-cleaner world is a single agent environment. A chess game is a two-agent environment.
Grundlagen der KI
You know how to categorize task environments and can evaluate the difficulty of given tasks
Deterministic vs. stochastic
An environment is deterministic if its next state is fully determined by its current state and the action of the agent (outcome of an action is known), and stochastic otherwise.
Example: The automated taxi driver environment is stochastic since the behavior of other traffic participants is unpredictable. The outcome of a calculator is deterministic.
Grundlagen der KI
You know how to categorize task environments and can evaluate the difficulty of given tasks
Episodic vs. sequential
An environment is episodic if the actions taken in one episode (in which the robot senses and acts) does not affect later episodes, and sequential otherwise.
Example: Detecting defective parts on a conveyor belt is episodic. Chess and automated taxi driving are sequential.
Grundlagen der KI
You know how to categorize task environments and can evaluate the difficulty of given tasks
Static vs. dynamic
If an environment only changes based on actions of the agent, it is static, and dynamic otherwise.
Example: The automated taxi driver environment is dynamic. A crossword puzzle / chess is static.
Grundlagen der KI
You know how to categorize task environments and can evaluate the difficulty of given tasks
Known vs. unknown
An environment is known if the agent knows the outcomes (or outcome probabilities) of its actions, and unknown otherwise. In the latter case, the agent has to learn the environment first.
Example: The agent knows all the rules of a card game it should play, thus it is in a known environment. Also autonomous driving is known (proabilities)
Grundlagen der KI
You know major categories of types of agents and can group an agent into one of them.
Four categores with increasing generalitiy:
All these can be turned into learning agents.
Grundlagen der KI
You understand how real world problems can often be posed as a pure search problem.
Examples of Real-World Problems
Grundlagen der KI
You can apply the most important uninformed search techniques:
Depth-Limited Search
Depth-Limited Search: Idea
Grundlagen der KI
You understand the difference between informed and uninformed search.
Uninformed search
Informed search
Für deinen Studiengang Grundlagen der KI an der TU München gibt es bereits viele Kurse auf StudySmarter, denen du beitreten kannst. Karteikarten, Zusammenfassungen und vieles mehr warten auf dich.
Zurück zur TU München ÜbersichtsseiteStudySmarter ist eine intelligente Lernapp für Studenten. Mit StudySmarter kannst du dir effizient und spielerisch Karteikarten, Zusammenfassungen, Mind-Maps, Lernpläne und mehr erstellen. Erstelle deine eigenen Karteikarten z.B. für Grundlagen der KI an der TU München oder greife auf tausende Lernmaterialien deiner Kommilitonen zu. Egal, ob an deiner Uni oder an anderen Universitäten. Hunderttausende Studierende bereiten sich mit StudySmarter effizient auf ihre Klausuren vor. Erhältlich auf Web, Android & iOS. Komplett kostenfrei. Keine Haken.
Bestes EdTech Startup in Deutschland
Du bist schon registriert? Hier geht‘s zum Login