Vectors an der Tribhuvan University Kathmandu | Karteikarten & Zusammenfassungen

Lernmaterialien für Vectors an der Tribhuvan University Kathmandu

Greife auf kostenlose Karteikarten, Zusammenfassungen, Übungsaufgaben und Altklausuren für deinen Vectors Kurs an der Tribhuvan University Kathmandu zu.

TESTE DEIN WISSEN

Which of the following two statements is more appropriate: 


Lösung anzeigen
TESTE DEIN WISSEN

Two velocities are added using the triangle rule because velocity is a vector quantity.

Lösung ausblenden
TESTE DEIN WISSEN

Can you add three unit vectors to get a unit vector ?

Does your answer change if two unit vectors are along

the coordinate axes ?

Lösung anzeigen
TESTE DEIN WISSEN

yes, taking three unit vectors as i , -i and j it sums up to be j which is a unit vector.

No my answer won't change.


Lösung ausblenden
TESTE DEIN WISSEN

Let A→=3i→+4j→. Write four vector B→ such that A→≠B→ but A=B

Lösung anzeigen
TESTE DEIN WISSEN

so the four different vectors can be

vec(B) = 3i-4j , -3i+4j, -3i-4j , 5k


Lösung ausblenden
TESTE DEIN WISSEN

The dot product of a vector A with the zero vector is  

Lösung anzeigen
TESTE DEIN WISSEN

0


Lösung ausblenden
TESTE DEIN WISSEN

Can you add two vectors representing physical

quantities having different dimensions ? Can you

multiply two vectors representing physical quantities

having different dimensions ?

Lösung anzeigen
TESTE DEIN WISSEN

Addition is not possible.

Multiplication is possible.

Lösung ausblenden
TESTE DEIN WISSEN

Can a vector have zero component along a line and still

have nonzero magnitude ?

Lösung anzeigen
TESTE DEIN WISSEN

Yes.

For example = 2i +0j

has magnitude of 2 along x direction.

Lösung ausblenden
TESTE DEIN WISSEN

Can we have physical quantities having magnitude and

direction which are not vectors ?

Lösung anzeigen
TESTE DEIN WISSEN

It also should follow vector law of addition

No. A physical quantity having both magnitude and direction need not be considered a vector. For example, despite having magnitude and direction, current is a scalar quantity. 


Lösung ausblenden
TESTE DEIN WISSEN

Two nonzero vectors are perpendicular, or orthogonal, if and only if their dot product is

Lösung anzeigen
TESTE DEIN WISSEN

0

Lösung ausblenden
TESTE DEIN WISSEN

Is it possible to add two vectors of unequal magnitudes

and get zero ?

Lösung anzeigen
TESTE DEIN WISSEN

No.

Let the two vectors you want to add be A→ and B→.

We want A→+B→=0

So, A→=0→−B→

which means A→=−B→

Taking the magnitudes

|A→|=|−B→

So,|A→|=|B→|

This means the two vectors have to be equal in magnitude and opposite in direction in order to cancel out.

Lösung ausblenden
TESTE DEIN WISSEN

In which case vector product and cross product will be equal?

Lösung anzeigen
TESTE DEIN WISSEN

All

Lösung ausblenden
TESTE DEIN WISSEN

A vector A points vertically upward to the plane and B points towards north. The vector product A

× B is

Lösung anzeigen
TESTE DEIN WISSEN

Along west

Lösung ausblenden
TESTE DEIN WISSEN

Is a vector necessarily changed if it is rotated through

an angle ?

Lösung anzeigen
TESTE DEIN WISSEN

Yes. A vector is defined by its magnitude and direction, so a vector can be changed by changing its magnitude and direction. If we rotate it through an angle, its direction changes and we can say that the vector has changed.

Lösung ausblenden
  • 156 Karteikarten
  • 66 Studierende
  • 0 Lernmaterialien

Beispielhafte Karteikarten für deinen Vectors Kurs an der Tribhuvan University Kathmandu - von Kommilitonen auf StudySmarter erstellt!

Q:

Which of the following two statements is more appropriate: 


A:

Two velocities are added using the triangle rule because velocity is a vector quantity.

Q:

Can you add three unit vectors to get a unit vector ?

Does your answer change if two unit vectors are along

the coordinate axes ?

A:

yes, taking three unit vectors as i , -i and j it sums up to be j which is a unit vector.

No my answer won't change.


Q:

Let A→=3i→+4j→. Write four vector B→ such that A→≠B→ but A=B

A:

so the four different vectors can be

vec(B) = 3i-4j , -3i+4j, -3i-4j , 5k


Q:

The dot product of a vector A with the zero vector is  

A:

0


Q:

Can you add two vectors representing physical

quantities having different dimensions ? Can you

multiply two vectors representing physical quantities

having different dimensions ?

A:

Addition is not possible.

Multiplication is possible.

Mehr Karteikarten anzeigen
Q:

Can a vector have zero component along a line and still

have nonzero magnitude ?

A:

Yes.

For example = 2i +0j

has magnitude of 2 along x direction.

Q:

Can we have physical quantities having magnitude and

direction which are not vectors ?

A:

It also should follow vector law of addition

No. A physical quantity having both magnitude and direction need not be considered a vector. For example, despite having magnitude and direction, current is a scalar quantity. 


Q:

Two nonzero vectors are perpendicular, or orthogonal, if and only if their dot product is

A:

0

Q:

Is it possible to add two vectors of unequal magnitudes

and get zero ?

A:

No.

Let the two vectors you want to add be A→ and B→.

We want A→+B→=0

So, A→=0→−B→

which means A→=−B→

Taking the magnitudes

|A→|=|−B→

So,|A→|=|B→|

This means the two vectors have to be equal in magnitude and opposite in direction in order to cancel out.

Q:

In which case vector product and cross product will be equal?

A:

All

Q:

A vector A points vertically upward to the plane and B points towards north. The vector product A

× B is

A:

Along west

Q:

Is a vector necessarily changed if it is rotated through

an angle ?

A:

Yes. A vector is defined by its magnitude and direction, so a vector can be changed by changing its magnitude and direction. If we rotate it through an angle, its direction changes and we can say that the vector has changed.

Vectors

Erstelle und finde Lernmaterialien auf StudySmarter.

Greife kostenlos auf tausende geteilte Karteikarten, Zusammenfassungen, Altklausuren und mehr zu.

Jetzt loslegen

Das sind die beliebtesten Vectors Kurse im gesamten StudySmarter Universum

Verbs

Technische Universität Graz

Zum Kurs
Human Factors

Bremen

Zum Kurs

Die all-in-one Lernapp für Studierende

Greife auf Millionen geteilter Lernmaterialien der StudySmarter Community zu
Kostenlos anmelden Vectors
Erstelle Karteikarten und Zusammenfassungen mit den StudySmarter Tools
Kostenlos loslegen Vectors