Zufallsgrößen auf StudySmarter lernen und verstehen

  • Alles was du für deine Zufallsgrößen Prüfungen brauchst - in einer App. Prüfungen brauchst - in einer App
  • Hunderte Zufallsgrößen Karteikarten & Zusammenfassungen
  • Digitale Zufallsgrößen Bücher von STARK
  • Zufallsgrößen Übungsaufgaben mit Tipps & Lösungen
Topic 5 Themen
Books 3 Bücher
Flashcards 50 Karteikarten
Zufallsgrößen
Zufallsgrößen
Zufallsgrößen

Beliebte Zufallsgrößen Themen auf StudySmarter

Lerne mit professionell erstellten Zufallsgrößen Karteikarten

Tausende Karteikarten & Übungsaufgaben mit Tipps & Lösungsweg für Zufallsgrößen und andere Fächer.

Zufallsgrößen

Frage

Bei einem Glücksspiel werden Zahlen gezogen. Für  eine 1 werden 2€, für eine 3 3€ und für eine 10 10€ ausgezahlt. Die Wahrscheinlichkeiten für eine 1 ist 0,3, für eine 3  0,2 und für eine 10  0,05. Der Einsatz pro Spiel beträgt 2 Euro. 

Bei allen anderen Zahlen, gibt es keinen Gewinn.


  1.  Berechne den Erwartungswert E(X)
  2. Bestimme den Gewinn für eine 3, so dass das Spiel fair ist.
  3. Für wen würde sich das Spiel lohnen, wenn man den Gewinn für die Zahl 1 um einen Euro erhöhen würde?
Antwort anzeigen

Antwort

  1. E(x)= -0,3
  2. Der Gewinn bei der Zahl 3 müsste 5,00€ sein.
  3. Der Erwartungswert wär E(x) = 0, es wäre ebenfalls fair.
Frage anzeigen

Frage

Berechne mit Hilfe der Binomialverteilung!


Bei einem Test gibt es 12 Fragen mit jeweils drei Antworten, von denen nur eine richtig ist. Der Schüler kreuzt bei jeder Frage rein zufällig eine Antwort an.

Mit welcher Wahrscheinlichkeit hat er


  1. genau fünf richtige Antworten?
  2. mindestens zehn richtige Antworten?
  3. höchstens eine richtige Antwort?
  4. mehr als neun richtige Antworten?
Antwort anzeigen

Antwort

a) 19,08%

b) 0,05%

c) 0,54%

d) 0,05%

Frage anzeigen

Frage

Marc Wettermann arbeit als Meteorologe beim Fernsehen. Zu seinen Aufgaben gehört es statistische Daten des Wetters zu erheben. Darunter versteht sein Arbeitgeber den Mittelwert, die Varianz und die Standardabweichung. Für eine Woche erhält er folgende Werte der Temperatur (Runde auf zwei Stellen nach dem Komma):

Montag: 6,4°C

Dienstag: 6,3°C

Mittwoch: 4,2°C

Donnerstag: 5,0°C

Freitag: 7,3°C

Samstag: 3,2°C

Sonntag: 5,1°C


Bestimme die geforderten Werte für die Woche. Marc gibt diese Aufgabe an seine drei Mitarbeiter, die mit verschiedenen Werten wiederkommen. Welcher der Mitarbeiter hat recht?

Antwort anzeigen

Antwort

Mittelwert: 1,41°C

Varianz: 1,31

Standardabweichung: 1,71°C

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Peter kommt in der Dunkelheit nach Hause und möchte die Tür aufsperren. An seinem Schlüsselbund hat er 4 Schlüssel, die er in der Dunkelheit nicht unterscheiden kann. Wenn er einen Schlüssel versucht hat, merkt er sich das und versucht den nächsten. Berechne, wie viele Schlüssel er im Durchschnitt probieren muss, um die Tür aufsperren zu können.


Antwort anzeigen

Antwort

Peter benötigt im Durchschnitt 2,5 Versuche.

Frage anzeigen

Frage

Ein Schüler hat 80% der zu lernenden Latein-Vokabeln gelernt. Bei der Prüfung wird er 5 zufällig ausgewählte Vokabeln gefragt. Die Prüfung gilt als bestanden, wenn er mindestens drei der Vokabeln kann. Wie groß ist die Wahrscheinlichkeit (in %, gerundet auf eine ganze Zahl), dass der Schüler die Prüfung besteht?

Antwort anzeigen

Antwort

94%

Frage anzeigen

Frage

Varianz einer Binomialverteilung!


Ein Glücksrad mit vier gleichgroßen Feldern (rot, blau, gelb, grün) wird 20-mal gedreht.

Die Zufallsvariable X gibt die Anzahl der gedrehten blauen Felder an. Berechne die Varianz dieser Zufallsvariablen!

Antwort anzeigen

Antwort

V(X) = 3,75
Frage anzeigen

Frage

Ein Glücksrad besteht aus drei Feldern. Einem Roten mit einem Gewinn von 20€, das einen Kreisanteil von 72° einnimmt, einem 144° großen blauen Feld mit einem Gewinn von 10€ und einem Nietenfeld der Größe 144°. Ein Spiel kostet 5€, lohnt sich das Spiel?


Antwort anzeigen

Antwort

Der Erwartungswert beträgt 8€ (dies entspricht dem zu erwartenden Gewinn), damit lohnt sich das Spiel bei einem Einsatz von 5€.

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Du fährst jeden Tag mit dem Bus in die Schule und schreibst dir jeden Tag auf, wie viel Verspätung der Bus hat. Du erhälst folgende Werte: 


Tag 1: 6 Minuten 

Tag 2: 1 Minute

Tag 3: 4 Minuten

Tag 4: 2 Minuten 

Tag 5: 7 Minuten


  1. Berechne die Varianz
  2. Wie würde sich die Varianz verändern, wenn der Bus an Tag 3 nur 3 Minuten, aber an Tag 5 = 8 Minuten Verspätung hätte?
Antwort anzeigen

Antwort

  1. Die Varianz beträgt 5,2
  2. Die Varianz beträgt 6,8
Frage anzeigen

Frage

Was ist der Mittelwert?

Antwort anzeigen

Antwort

Der Mittelwert beschreibt das arithmetische Mittel einer durchgeführten Versuchsreihe.

Frage anzeigen

Frage

Wie lautet das Maß für die Streeung einer Zufallsvariable Z um den Erwartungswert E(Z)?

Antwort anzeigen

Antwort

Varianz

Frage anzeigen

Frage

Welche Informationen liefert der Erwartungswert?

Antwort anzeigen

Antwort

  • Der Erwartungswert der Zufallsgröße Z wird mit E(Z) oder μ („mü“) abgekürzt.
  • Der Erwartungswert ist der auf lange Sicht zu erwartende mittlere Wert von Z (z. B. der mittlere Gewinn, die mittlere Auszahlung usw.).
  • Wenn der Erwartungswert des Gewinns bei einem Glücksspiel 0 € ist, heißt ein solches Spiel fair.
Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Wie lautet die Formel zur Berechnung der Varianz einer binomialverteilten Zufallsvariable Z?

Antwort anzeigen

Antwort

Var(Z) = n · p · (1 – p).

Frage anzeigen

Frage

Wie wird der Erwartungswert für die Nullhypothese berechnet?

Antwort anzeigen

Antwort

E(X) = n ⋅ p0

Frage anzeigen

Frage

Was sagt der Erwartungswert E(Z) aus?

Antwort anzeigen

Antwort

Der Erwartungswert E(Z) schaut in die „Zukunft“, d. h., er sagt
aus, dass sich bei sehr vielen Durchführungen des Zufallsexpe-
riments ein Mittelwert E(Z) einstellen wird.

Frage anzeigen

Frage

Welche drei Größen werden als Kennzeichen einer Zufallsgröße bezeichnet?

Antwort anzeigen

Antwort

Erwartungswert, Varianz und Standardabweichung 

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Was ist eine Hypergeometrische Verteilung?

Antwort anzeigen

Antwort

Die hypergeometrische Verteilung ist eine Wahrscheinlichkeitsverteilung in der Stochastik.

Die hypergeometrische Verteilung gibt Auskunft darüber, mit welcher Wahrscheinlichkeit in der Stichprobe eine bestimmte Anzahl von Elementen vorkommt, die die gewünschte Eigenschaft haben. Bedeutung kommt dieser Verteilung daher etwa bei Qualitätskontrollen zu. 


Die hypergeometrische Verteilung wird modellhaft dem Urnenmodell ohne Zurücklegen zugeordnet

Frage anzeigen

Frage

Eine Firma stellt Volleybälle her. Aus langjähriger Erfahrung weiß man, dass 12% aller produzierten Bälle fehlerhaft sind. In der Endkontrolle werden 15 Bälle zufällig ausgewählt und kontrolliert. Mit welcher Wahrscheinlichkeit 


  1. sind genau vier Bälle fehlerhaft? 
  2. sind höchstens 5 Bälle fehlerhaft? 
  3.  sind mehr als vier Bälle fehlerhaft? 
  4.  sind mindestens zwei, aber weniger als fünf Bälle fehlerhaft?
Antwort anzeigen

Antwort

a. 7%

b. 99%

c. 97%

d. 53%

Frage anzeigen

Frage

Eine Maschine produziert Bleche mit einer Dicke von durchschnittlich 0,9 mm. Die Standardabweichung beträgt 0,05 mm. 


Berechnen Sie den Prozentsatz der Bleche, die dicker als 0,75 mm sind.

Antwort anzeigen

Antwort

99,87%

Frage anzeigen

Frage

Bearbeite die folgende Aufgabe!


Ein großes Möbelhaus hat in seinem Sortiment einen Kleiderschrank, bei dem für den Zusammenbau 48 Schrauben der Sorte A und 21 Schauben der Sorte B benötigt werden. Vom Lieferanten der Schrauben weiß man, dass 3% der Schrauben von Sorte A und 4% von Sorte B Fehler aufweisen und nicht für den Zusammenbau geeignet sind.

  1.  Bestimme die Wahrscheinlichkeit dafür, dass ausreichend fehlerfreie Schrauben von Typ A vorhanden sind, wenn der Bausatz 50 Schrauben der Sorte A enthält.
  2. Wie hoch ist die Wahrscheinlichkeit, dass die 25 Schrauben der Sorte B, die der Bausatz enthält nicht ausreichen um den Schrank komplett zusammen zu bauen.
  3. Mit welcher Wahrscheinlichkeit kann der Schrank unter den in a. und b. gegebenen Voraussetzungen aufgebaut werden?
  4. Gib dem Möbelhaus auf Basis deiner Ergebnisse eine sinnvolle Empfehlung für die Anzahl der im Bausatz beigefügten Schrauben von Typ A und B.
Antwort anzeigen

Antwort

  1. 0,8108 = 81,1%
  2. 0,00278 = 0,3%
  3. 0,80855 = 80,9%
  4. z.B. mehr Schrauben der Sorte A beifügen, um die Kundenzufriedenheit zu erhöhen.
Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Bestimme die folgenden Wahrscheinlichkeiten!


Ein Fußballer hat beim Elfmeterschießen eine Trefferquote von 75%

  1. Wie wahrscheinlich ist es, dass er bei 10 Versuchen mindestens 8-mal trifft?
  2. Gib die Wahrscheinlichkeit an, dass er höchstens 5 von 10 Schüssen trifft.
  3. Mit welcher Wahrscheinlichkeit trifft er mehr als 8 aber weniger als 12 von 15 Elfmetern?
  4. Durch intensives Training konnte er seine Erfolgsquote um 10% steigern. Wie wahrscheinlich ist es nun, dass er von 20 Elfmetern mehr als 4 vergibt?
Antwort anzeigen

Antwort

  1. 0,52559 = 52,6%
  2. 0,07813 = 7,8%
  3. 0,48209 = 48,2%
  4. 0,17015 = 17,0%
Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 6, 9, 10, 8, 7

b. 1,1; 0,9; 1,3; 1,3; 1,4

c. 20, 18, 16, 22, 21, 17

Antwort anzeigen

Antwort

a. D=8 ; V= 2

b. D=1,2 ; V=0,032

c. D=19 ; V=4,67

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 1, 3, 2, 2.5, 1, 2,5

b. 0.5, 0.4, 0.5, 0.7, 0.4, 0.5

c. 25, 26, 23, 23, 24, 23

Antwort anzeigen

Antwort

a. D=2   V=0,583

b. D=0,5   V=0,01

c. D=24   V=1,33

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 0, 0, 1, 2, 0, 3

b. 0.8, 0.7, 0.8, 0.9, 0.6, 0.4

c. 50, 53, 51, 52, 50, 50

Antwort anzeigen

Antwort

a. D=1  V=1,33

b. D=0,7   V=0,0266

c. D=51   V=1,33

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 2, 3, 1, 3, 3, 1, 2, 1

b. 0.2, 0.3, 0.2, 0.1, 0.2

c. 20, 21, 18, 18, 23, 20

Antwort anzeigen

Antwort

a. D=2  S=0,866

b. D=0.2   S=0,063

c. D=20  S=1,73

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 3, 5, 1, 2, 2, 5

b. 0.8, 0.7, 0.9, 0.9, 0.7

c. 50, 55, 53, 52, 40, 50

Antwort anzeigen

Antwort

a. D=3    S=1,58

b. D=0,8   S=0,089

c. D=50   S=4,8

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 6, 4, 8, 5, 8

b. 0.5, 0.6, 0.6, 0.5, 0.8

c. 55, 65, 65, 75, 60, 70

Antwort anzeigen

Antwort

a. D=6   S=1,53

b. D=0,6  S=0,11

c. D=65   S=6,45

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 7, 12, 9, 12, 11, 9  

b. 0.4, 0.4, 0.5, 0.4, 0.3

c. 89, 95, 88, 87, 91, 90

Antwort anzeigen

Antwort

a. D=10   S=1,83

b. D=0,4   S=0,063

c. D=90   S= 2,58

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 8, 9, 10, 6, 7, 8  

b. 0.1, 0, 0.2, 0.2, 0

c. 71, 72, 77, 77, 78, 75

Antwort anzeigen

Antwort

a. D=8   S=1,29

b. D=0,1   S=0,089

c. D=75   S=2,65

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 2; 1; 3; 5; 6; 7

b. 51; 58; 55; 59; 52

c. 14; 18; 15; 17; 19; 21; 22



Antwort anzeigen

Antwort

a. D = 4

    V = 4,67

b. D = 55

    V = 10

c. D = 18

    V = 4,43

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 2, 3, 5, 2, 4, 2

b. 0,3; 0,4; 0,5; 0,5; 0,3

c. 28; 27, 29, 31, 30, 29

Antwort anzeigen

Antwort

a. D=3   S=1,154

b. D= 0,4   S=0,089

c. D=29   S=1,29

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 7, 8, 6, 5, 9, 7

b. 0,7; 0,8; 0,7; 0,6; 0,7

c. 33; 35; 34; 36; 32; 34

Antwort anzeigen

Antwort

a. D=7   S=1,29

b. D=0,7   S=0,063

C: D=34   S=1,29

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 6, 10, 3, 7, 4, 6

b. 0,01; 0,05; 0,04; 0,06; 0,04

c. 82, 84, 83, 85, 82, 88

Antwort anzeigen

Antwort

a. D=6   S=2,24

b. D=0,04   S=0,0167

c. D=84   S=2,08

Frage anzeigen

Frage

Berechne den Durchschnitt (D) und die Standardabweichung (S) der folgenden Zahlenreihen


a. 5, 6, 4, 6, 5, 4

b. 0,5; 0,3; 0,8; 0,7; 0,2

c. 66; 68; 65; 65; 67; 65

Antwort anzeigen

Antwort

a. D=5   S=0,816

b. D= 0,5   S=0,51

c. D=66   S=1,154

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 3; 5; 6; 2; 4; 4

b. 50; 56; 48; 47; 49

c. 10,0; 10,5; 10,2; 10,3; 10,2; 10,3

Antwort anzeigen

Antwort

a. D=4   V=1,67

b. D=50   V=10

c. D=10,25   V=0,0225

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 5, 4, 6, 5, 7, 3

b. 51, 55, 53, 56, 53, 50

c. 1,5; 1,8; 1,6; 1,6; 1,4; 1,7

Antwort anzeigen

Antwort

a. D=5   V=1,67

b. D=53   V=4,33

c. D=1,6   V=0,1

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 6, 5, 5, 8, 4, 8

b. 72, 73, 76, 77, 77

c. 2,5; 2,6; 2,8; 2,3; 2,3; 2,5

Antwort anzeigen

Antwort

a. D=6   V=2,33

b. D=75   V=4,4

d. D=2,5   V=0,03

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V) 


a. 7, 5, 5, 7, 6, 6

b. 65, 64, 66, 67, 63

c. 1,4; 1,35; 1,4; 1,35; 1,5

Antwort anzeigen

Antwort

a. D=6   V=0,67

b. D=65   V=2

c. D=1,4   V=0,003

Frage anzeigen

Frage

Ein fairer Würfel wird zweimal geworfen. Sei X die Summe der beiden Würfe, W1 die Augenzahl des 1. Wurfes, W2 die Augenzahl des 2. Wurfes und Y die Augenzahl des höheren Wurfes, d. h. bspw. wenn einmal eine 3 und einmal eine 5 geworfen wurde, ist Y = 5

  1. Berechne den Erwartungswert von X.
  2. Berechne den Erwartungswert von Y.


Antwort anzeigen

Antwort

  1. Der Erwartungswert  von X ist 7
  2. Der Erwartungswert von Y = 4,47222
Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 5, 6, 5, 4, 7, 3

b. 1,5; 1,6; 1,5; 1,4; 1,5; 1,5

c. 72, 75, 75, 76, 73, 73

Antwort anzeigen

Antwort

a. D= 5   V= 1,67

b. D= 1,5   V= 0,0033

c. D= 74   V= 2

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 2, 3, 2, 2, 3, 0

b. 0,4; 0,6; 0,5; 0,8; 0,3; 0,4

c. 55, 56, 58, 53, 52, 56

Antwort anzeigen

Antwort

a. D=2   V= 1

b. D=0,5   V= 0,0267

c. D=55  V=4

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 0; 0,5; 0,8; 1,3; 1,4; 2

b. 5, 6, 5, 8, 3, 3

c. 100, 103, 102, 105, 95,

Antwort anzeigen

Antwort

a. D=1   V= 0,2567

b. D=5   V=3

c. D=101   V=11,6

Frage anzeigen

Frage

In einer Schulklasse sind 25 Schüler, davon 16 Jungen und 9 Mädchen. Es werden zufällig 8 Schüler für eine Umfrage ausgewählt. Wie groß ist die Wahrscheinlichkeit, dass unter den ausgewählten Schülern genau 4 Mädchen sind?

Antwort anzeigen

Antwort

0,212  bzw. 21,2%.

Frage anzeigen

Frage

In einer Fabrik wird ein neues Herstellungsverfahren eingeführt. Der Ausschussanteil soll auf 10% gesenkt werden. Dies soll anhand eines Hypothesentests auf einem Signifikanzniveau von 5% und eine Stichprobenumfang von 100 Filtern geprüft werden.


a. Ermitteln Sie einen kritischen Wert k.

b. Formulieren Sie eine Entscheidungsregel.

Antwort anzeigen

Antwort

a. k=2

b. Es darf nicht mehr als 1 Filter defekt sein.

Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Ein fairer Würfel wird geworfen. Berechne die Varianz, wenn der Würfel


  1. die Zahlen 1,2,3,4,5 und 6 enthält
  2. die Zahlen 2,4,8,16,32 und 64 enthält
Antwort anzeigen

Antwort

  1. 2,91666666
  2. 469
Frage anzeigen

Frage

In einer Urne sind 2 rote und 3 blaue Kugeln. Es wird mit zurücklegen gezogen. Sei X die Anzahl der gezogenen roten Kugeln. Berechne die Varianz von X, wenn

  1. 2 Mal gezogen wird.
  2. 3 Mal gezogen wird.
Antwort anzeigen

Antwort

  1. 0,48
  2. 0,72
Frage anzeigen

Frage

Ein Glücksrad hat einen roten Sektor und einen blauen Sektor. Der rote Sektor hat eine Größe von p (0<p<1), der blaue eine Größe von 1 -p. Das Rad wird einmal gedreht. Sei X eine Zufallsvariable mit X= 1, wenn das Rad rot zeigt, und 0, wenn es Blau zeigt.

  1. Berechne in Abhängigkeit von p die Varianz von X
  2. für welchen Wert von p wird die Varianz von X maximal?
  3.  Wie groß ist die Varianz in diesem Fall?
Antwort anzeigen

Antwort

  1. p-p²
  2.  p =0,5; 
  3. Varianz = 0,25
Frage anzeigen

Frage

Der Notenspiegel bei einer Klausur sieht wiefolgt aus: 4 Schüler haben eine 1, 7 Schüler eine 2, 6 Schüler eine 3, 5 Schüler eine 4 und 3 Schüler haben eine 5.


  1. Berechne die Varianz der Noten.
  2. Bei 3 Schülern, die die Klausur nachgeschrieben haben, haben 2 Schüler eine 4 und ein Schüler eine 5. Berechne die neue Varianz des Notenspiegels.
Antwort anzeigen

Antwort

  1.  Varianz = 1,5744
  2. Varianz =  1,64285
Frage anzeigen
Das war nur eine Vorschau der Karteikarten auf StudySmarter.
Zufallsgrößen Zufallsgrößen

Tausende Karteikarten mit Lösungen

Zufallsgrößen Zufallsgrößen

Erstelle eigene Karteikarten in Rekordzeit

Zufallsgrößen Zufallsgrößen

Kostenlose Karteikarten zu STARK Inhalten

Kostenlos anmelden

Frage

Eine Münze wird solange geworfen, bis zum ersten Mal Wappen erscheint, jedoch höchstens dreimal. Die Anzahl der Würfe bis zum Spielende sei die Zufallsgröße A. 

Bestimmen Sie den Erwartungswert und die Standardabweichung von A.

Antwort anzeigen

Antwort

Erwartunswert: E=1,375

Varianz: s=0,71

Frage anzeigen

Frage

Ein symmetrischer Spielwürfel mit den Zahlen von eins bis sechs wird solange geworfen, bis zum ersten Mal eine 6 erscheint, jedoch höchstens dreimal. Die Anzahl der Würfe bis zum Spielende sei die Zufallsgröße A. 

Bestimmen Sie Erwartungswert und Standardabweichung von A.

Antwort anzeigen

Antwort

Erwartungswert E=0,7916

Stabdardabweichung s=0,88

Frage anzeigen

Frage

Berechne zu den folgenden Wertereihen den Durchschnittswert (D) sowie die Varianz (V)


a. 5, 7, 7, 8, 8

b. 2,0; 2,5; 2,4; 2,0; 2,1; 2,2

c. 34; 33; 34; 35; 33; 35

Antwort anzeigen

Antwort

a. D=7 ; V=1,2

b. D=2,2 ; V=0,0367

c. D=34 ; V=0,67

Frage anzeigen
Hier siehst du nur eine Vorschau. Melde dich kostenfrei an um alle Inhalte zu sehen.
Jetzt anmelden
Zufallsgrößen

Hol dir jetzt die Mobile App

Die StudySmarter Mobile App wird von Apple & Google empfohlen.

Zufallsgrößen

Lerne mit der Web App

Alle Lernunterlagen an einem Ort mit unserer neuen Web App.

Mehr dazu Zufallsgrößen
Finde passende Lernmaterialien für deine Fächer