Visual Data Analytics at TU München | Flashcards & Summaries

Lernmaterialien für Visual data analytics an der TU München

Greife auf kostenlose Karteikarten, Zusammenfassungen, Übungsaufgaben und Altklausuren für deinen Visual data analytics Kurs an der TU München zu.

TESTE DEIN WISSEN

 Difference between Curvelinear and unstructured grid?

Lösung anzeigen
TESTE DEIN WISSEN

Unstructered Grid you also need to save neighborhood points

The cells are tetrahedra or hexahedra

Lösung ausblenden
TESTE DEIN WISSEN

Name an algorithm that is commonly used in INDIRECT volume visualization.

Lösung anzeigen
TESTE DEIN WISSEN

MC-algorithm (Marching Cubes)

Lösung ausblenden
TESTE DEIN WISSEN

Isolines properties

Lösung anzeigen
TESTE DEIN WISSEN
  • Isolines are always closed curves
  • They never intersect with each other and they don't self-intersect
  • Always orthogonal to scalar field's gradient 
Lösung ausblenden
TESTE DEIN WISSEN

Explain the filtering/enhancement stage. Give at least two examples.

Lösung anzeigen
TESTE DEIN WISSEN

It is a process to obtain useful data (e.g., 3D volume) 


Examples:

  • Conversion of data format  
  • Co-registration of different data sets 
  • Interpolation/approximation of missing values 
  • Remove nonrelevant data
  • Cleaning and denoising 
Lösung ausblenden
TESTE DEIN WISSEN

In which stage of the visualization pipeline are the viewpoint and

lighting parameters specified?

Lösung anzeigen
TESTE DEIN WISSEN

Rendering

Lösung ausblenden
TESTE DEIN WISSEN

In which stage of the visualization pipeline are colors assigned to every voxel?

Lösung anzeigen
TESTE DEIN WISSEN

Visualization mapping

Lösung ausblenden
TESTE DEIN WISSEN

Rendering (4th step)

Lösung anzeigen
TESTE DEIN WISSEN

Image, video or something else as visualisation

  • Decide viewpoint
  • Visibility calculation
  • Shading/illumination so it looks natural 
Lösung ausblenden
TESTE DEIN WISSEN

What are the independent and dependent variables in a 3D spatial curve

Lösung anzeigen
TESTE DEIN WISSEN

???

Lösung ausblenden
TESTE DEIN WISSEN

How is a cartesian grid different from

a regular grid?

Lösung anzeigen
TESTE DEIN WISSEN

dx the same as dy since it is  evenly spaced in all direction.

A regular grid does not need to have it, 

Lösung ausblenden
TESTE DEIN WISSEN

Rectilinear Grid - difference to cartesian or regular

Lösung anzeigen
TESTE DEIN WISSEN

Varying samples of distances between dx and dy, 

We can no longer compute the positions easily so we need to save them 

Lösung ausblenden
TESTE DEIN WISSEN

What is a curvilinear grid? How is it characterized?  Which information needs to be specified explicitly for such a grid? 

Lösung anzeigen
TESTE DEIN WISSEN
  • Not orthogonal
  • We need to store all the grid points
  • But neighborhood information is still stored
    • Increase or decrease indices
  • It can have a high resolution in some places and bigger cells in other areas.   
Lösung ausblenden
TESTE DEIN WISSEN

Discuss independent vs. dependent variables in data. Give at least two examples each.

Lösung anzeigen
TESTE DEIN WISSEN

Independent variables

Dimension of the domain of the problem

  • Time
  • 2D/3D space


Dependent variables

Type and dimension of the data

  • Temperature
  • Density
  • Values
  • Velocity vectors
Lösung ausblenden
  • 356460 Karteikarten
  • 8257 Studierende
  • 335 Lernmaterialien

Beispielhafte Karteikarten für deinen Visual data analytics Kurs an der TU München - von Kommilitonen auf StudySmarter erstellt!

Q:

 Difference between Curvelinear and unstructured grid?

A:

Unstructered Grid you also need to save neighborhood points

The cells are tetrahedra or hexahedra

Q:

Name an algorithm that is commonly used in INDIRECT volume visualization.

A:

MC-algorithm (Marching Cubes)

Q:

Isolines properties

A:
  • Isolines are always closed curves
  • They never intersect with each other and they don't self-intersect
  • Always orthogonal to scalar field's gradient 
Q:

Explain the filtering/enhancement stage. Give at least two examples.

A:

It is a process to obtain useful data (e.g., 3D volume) 


Examples:

  • Conversion of data format  
  • Co-registration of different data sets 
  • Interpolation/approximation of missing values 
  • Remove nonrelevant data
  • Cleaning and denoising 
Q:

In which stage of the visualization pipeline are the viewpoint and

lighting parameters specified?

A:

Rendering

Mehr Karteikarten anzeigen
Q:

In which stage of the visualization pipeline are colors assigned to every voxel?

A:

Visualization mapping

Q:

Rendering (4th step)

A:

Image, video or something else as visualisation

  • Decide viewpoint
  • Visibility calculation
  • Shading/illumination so it looks natural 
Q:

What are the independent and dependent variables in a 3D spatial curve

A:

???

Q:

How is a cartesian grid different from

a regular grid?

A:

dx the same as dy since it is  evenly spaced in all direction.

A regular grid does not need to have it, 

Q:

Rectilinear Grid - difference to cartesian or regular

A:

Varying samples of distances between dx and dy, 

We can no longer compute the positions easily so we need to save them 

Q:

What is a curvilinear grid? How is it characterized?  Which information needs to be specified explicitly for such a grid? 

A:
  • Not orthogonal
  • We need to store all the grid points
  • But neighborhood information is still stored
    • Increase or decrease indices
  • It can have a high resolution in some places and bigger cells in other areas.   
Q:

Discuss independent vs. dependent variables in data. Give at least two examples each.

A:

Independent variables

Dimension of the domain of the problem

  • Time
  • 2D/3D space


Dependent variables

Type and dimension of the data

  • Temperature
  • Density
  • Values
  • Velocity vectors
Visual data analytics

Erstelle und finde Lernmaterialien auf StudySmarter.

Greife kostenlos auf tausende geteilte Karteikarten, Zusammenfassungen, Altklausuren und mehr zu.

Jetzt loslegen

Das sind die beliebtesten StudySmarter Kurse für deinen Studiengang Visual data analytics an der TU München

Für deinen Studiengang Visual data analytics an der TU München gibt es bereits viele Kurse, die von deinen Kommilitonen auf StudySmarter erstellt wurden. Karteikarten, Zusammenfassungen, Altklausuren, Übungsaufgaben und mehr warten auf dich!

Das sind die beliebtesten Visual data analytics Kurse im gesamten StudySmarter Universum

data analysis

Universität Wien

Zum Kurs
Smart Data Analytics

Universität Koblenz-Landau

Zum Kurs

Die all-in-one Lernapp für Studierende

Greife auf Millionen geteilter Lernmaterialien der StudySmarter Community zu
Kostenlos anmelden Visual data analytics
Erstelle Karteikarten und Zusammenfassungen mit den StudySmarter Tools
Kostenlos loslegen Visual data analytics