Reasoning And Logic at Delft University Of Technology | Flashcards & Summaries

Lernmaterialien für Reasoning and logic an der Delft University of Technology

Greife auf kostenlose Karteikarten, Zusammenfassungen, Übungsaufgaben und Altklausuren für deinen Reasoning and logic Kurs an der Delft University of Technology zu.

TESTE DEIN WISSEN
When are 2 propositions logically equivalent?
Lösung anzeigen
TESTE DEIN WISSEN
  • When they have the same value in the final column of their truth tables 
( propositions can be logically equivalent even if they have different atoms or not the same number of atoms )

  • Also, P & Q are logically equivalent iff P <-> Q is a tautology
Lösung ausblenden
TESTE DEIN WISSEN
What is the order of operators?
Lösung anzeigen
TESTE DEIN WISSEN
*1st to last to evaluate*
Not
And 
Or/xor 
Implication 
Bi-implication

Lösung ausblenden
TESTE DEIN WISSEN
CONTRAPOSITIVE of p -> q
Lösung anzeigen
TESTE DEIN WISSEN
!q -> !p

(And they are equivalent !!!! )
Lösung ausblenden
TESTE DEIN WISSEN
CONVERSE of p -> q
Lösung anzeigen
TESTE DEIN WISSEN
q -> p
Lösung ausblenden
TESTE DEIN WISSEN
INVERSE of p -> q
Lösung anzeigen
TESTE DEIN WISSEN
!p -> !q 

(Esti pe invers! E cv negativ:) deci doar negam) 
Lösung ausblenden
TESTE DEIN WISSEN
Modus ponens and Modus tollens form? And how can you tell if an argument is valid from these?
Lösung anzeigen
TESTE DEIN WISSEN
Modus ponens: 
p -> q 
p
Therefore q

Modus tollens: 
p -> q 
!q
Therefore !p

An argument is valid if the conjunction of the premises logically implies the conclusion: 

  • Modus ponens: if (p -> q) AND (p)  )-> q  is a tautology then the argument is valid 
  • Modus tollens: if (p -> q) AND (!q)  )-> !p is a tautology then the argument is valid
Lösung ausblenden
TESTE DEIN WISSEN
When is an argument valid and when is it invalid? 
Lösung anzeigen
TESTE DEIN WISSEN
  • Valid: if in all cases where the premises are true, the conclusion si also true 
  • Invalid: if there is at least one case where all the premises are true but the conclusion is false => give counterexample 
Lösung ausblenden
TESTE DEIN WISSEN
What does the principle of explosion state? 
Lösung anzeigen
TESTE DEIN WISSEN
If we have a contradiction among the premises then the argument is always valid. 
(this is since we will never find a case of all premises true but conclusion false to make the arg invalid) 
Lösung ausblenden
TESTE DEIN WISSEN
How can an argument be valid if it has no premises? 
Lösung anzeigen
TESTE DEIN WISSEN
If the conclusion is a tautology
Lösung ausblenden
TESTE DEIN WISSEN
CNF & DNF 
Lösung anzeigen
TESTE DEIN WISSEN
Form truth table and make K-map 
  • Group all 1s => DNF 
  • Group all zeros and then negate everything => CNF 

DNF = disjunctions of conjunctions 
             (p AND q) OR (q AND !r) 

CNF =  conjunctions of disjunctions
             (p OR q) AND (q OR !r) 

Both CNF and DNF: 
  • p/q/ !r …
  • a OR b OR c 
  • a AND b AND c 
Lösung ausblenden
TESTE DEIN WISSEN
Necessary and sufficient 
Lösung anzeigen
TESTE DEIN WISSEN
  • p is necessary for q:   q -> p holds
  • p is sufficient for q:   p -> q holds 


Lösung ausblenden
TESTE DEIN WISSEN
Proof by generalisation
Lösung anzeigen
TESTE DEIN WISSEN
Used when we have “for all” statements usually.

“Let k be an arbitrary (…)” 
Now we assume the premise and and prove that the conclusion follows from that. 

“Since k was arbitrarily chosen, it holds that… “ 

QED (never forget to end your proof) 
Lösung ausblenden
  • 889 Karteikarten
  • 35 Studierende
  • 0 Lernmaterialien

Beispielhafte Karteikarten für deinen Reasoning and logic Kurs an der Delft University of Technology - von Kommilitonen auf StudySmarter erstellt!

Q:
When are 2 propositions logically equivalent?
A:
  • When they have the same value in the final column of their truth tables 
( propositions can be logically equivalent even if they have different atoms or not the same number of atoms )

  • Also, P & Q are logically equivalent iff P <-> Q is a tautology
Q:
What is the order of operators?
A:
*1st to last to evaluate*
Not
And 
Or/xor 
Implication 
Bi-implication

Q:
CONTRAPOSITIVE of p -> q
A:
!q -> !p

(And they are equivalent !!!! )
Q:
CONVERSE of p -> q
A:
q -> p
Q:
INVERSE of p -> q
A:
!p -> !q 

(Esti pe invers! E cv negativ:) deci doar negam) 
Mehr Karteikarten anzeigen
Q:
Modus ponens and Modus tollens form? And how can you tell if an argument is valid from these?
A:
Modus ponens: 
p -> q 
p
Therefore q

Modus tollens: 
p -> q 
!q
Therefore !p

An argument is valid if the conjunction of the premises logically implies the conclusion: 

  • Modus ponens: if (p -> q) AND (p)  )-> q  is a tautology then the argument is valid 
  • Modus tollens: if (p -> q) AND (!q)  )-> !p is a tautology then the argument is valid
Q:
When is an argument valid and when is it invalid? 
A:
  • Valid: if in all cases where the premises are true, the conclusion si also true 
  • Invalid: if there is at least one case where all the premises are true but the conclusion is false => give counterexample 
Q:
What does the principle of explosion state? 
A:
If we have a contradiction among the premises then the argument is always valid. 
(this is since we will never find a case of all premises true but conclusion false to make the arg invalid) 
Q:
How can an argument be valid if it has no premises? 
A:
If the conclusion is a tautology
Q:
CNF & DNF 
A:
Form truth table and make K-map 
  • Group all 1s => DNF 
  • Group all zeros and then negate everything => CNF 

DNF = disjunctions of conjunctions 
             (p AND q) OR (q AND !r) 

CNF =  conjunctions of disjunctions
             (p OR q) AND (q OR !r) 

Both CNF and DNF: 
  • p/q/ !r …
  • a OR b OR c 
  • a AND b AND c 
Q:
Necessary and sufficient 
A:
  • p is necessary for q:   q -> p holds
  • p is sufficient for q:   p -> q holds 


Q:
Proof by generalisation
A:
Used when we have “for all” statements usually.

“Let k be an arbitrary (…)” 
Now we assume the premise and and prove that the conclusion follows from that. 

“Since k was arbitrarily chosen, it holds that… “ 

QED (never forget to end your proof) 
Reasoning and logic

Erstelle und finde Lernmaterialien auf StudySmarter.

Greife kostenlos auf tausende geteilte Karteikarten, Zusammenfassungen, Altklausuren und mehr zu.

Jetzt loslegen

Das sind die beliebtesten Reasoning and logic Kurse im gesamten StudySmarter Universum

Philosophy and Logic

University of Calabar

Zum Kurs
Programing Logic and Design

University of San Carlos

Zum Kurs
955 mechanical aptitude and spatical reasoning

ITT Technical Institute

Zum Kurs

Die all-in-one Lernapp für Studierende

Greife auf Millionen geteilter Lernmaterialien der StudySmarter Community zu
Kostenlos anmelden Reasoning and logic
Erstelle Karteikarten und Zusammenfassungen mit den StudySmarter Tools
Kostenlos loslegen Reasoning and logic